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Abstract 

The T-cell receptor (TCR) allows T-cells to recognize and respond to antigens presented by infected and 
diseased cells. However, due to TCRs’ staggering diversity and the complex binding dynamics underlying 
TCR antigen recognition, it is challenging to predict which antigens a given TCR may bind to. Here, we 
present TCR-BERT, a deep learning model that applies self-supervised transfer learning to this problem. 
TCR-BERT leverages unlabeled TCR sequences to learn a general, versatile representation of TCR 
sequences, enabling numerous downstream applications. We demonstrate that TCR-BERT can be used to 
build state-of-the-art TCR-antigen binding predictors with improved generalizability compared to prior 
methods. TCR-BERT simultaneously facilitates clustering sequences likely to share antigen specificities. It 
also facilitates computational approaches to challenging, unsolved problems such as designing novel TCR 
sequences with engineered binding affinities. Importantly, TCR-BERT enables all these advances by 
focusing on residues with known biological significance. TCR-BERT can be a useful tool for T-cell scientists, 
enabling greater understanding and more diverse applications, and provides a conceptual framework for 
leveraging unlabeled data to improve machine learning on biological sequences. 

Introduction 

T cells are a central component of the adaptive immune system 1. Mature T cells continuously monitor 
their surroundings – in the blood and in tissues – for signs of foreign invaders or diseased cells and help 
activate other immune defenses upon recognition. In the event of a viral infection such as with HIV or 
SARS-CoV-2, for example, infected cells present viral antigens (i.e., short viral peptide chains) on the 
peptide-major histocompatibility complex (pMHC), which are then recognized by T cells 2. In cancer, 
fragments of mutated intracellular proteins are similarly presented on the MHC by cancerous cells and 
detected by the immune system as neoantigens. T-cell mediated anti-tumor immunity can be 
therapeutically harnessed in several ways, including immune checkpoint blockade therapies which show 
clinical benefit in a variety of cancer types 3. Healthy cells similarly present antigens identifying themselves 
as non-threatening, but aberrant recognition of these self-antigens as invaders – a phenomenon 
frequently known as autoreactivity – can cause autoimmune disorders like multiple sclerosis 4 5 and type 
1 diabetes 6 7. In each of these settings, understanding the antigen(s) recognized by T cells is key to 
understanding the underlying drivers and progression of each malignancy and for developing effective 
treatments 8 9 10 11 12 13.  

Despite the importance and therapeutic potential of T cells, it is challenging to predict their antigen 
recognition behavior, which is mediated via the T-cell receptor (TCR). The TCR itself is a dimeric protein 
with two hypervariable chains – typically ⍺ and β chains, encoded by the TRA and TRB genes – that jointly 
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bind to and interact with the pMHC-antigen complex 14. This biophysical interaction is believed to be 
primary determinant of antigen specificity 15 16. These TRA and TRB sequences are specified through 
recombination of the variable (V), diversity (D), and junction (J) gene segments, as well as through random 
insertions and deletions. This stochastic process generates a staggering diversity of different TCR 
sequences – often estimated to be on the order of (hundreds of) millions for a healthy human individual 
17 18 19. This diversity crucially lends the immune system its ability to recognize a vast array of antigens, but 
also makes precisely understanding and predicting TCR-antigen specificity difficult. This challenge is 
compounded by observations that a single TCR often recognizes multiple antigens 20 21 22, a phenomenon 
known as cross-reactivity, and conversely, that any given antigen may be recognized by many TCRs with 
varying affinities 23.  

Recently, the growing popularity and accessibility of sequencing technologies has enabled high-
throughput profiling of TCR sequences 24 25, which has in turn empowered numerous computational 
methods studying and predicting TCR-antigen binding. Conventional approaches like GLIPH 15 26, 
TCRMatch 27, and TCRdist 28 typically rely on sequence motif comparisons and manually engineered 
heuristics to predict which TCRs are likely to share common antigen binding partners. More recently, 
researchers have applied various machine learning methods to predicting TCR-antigen binding. Examples 
include DeepTCR (variational convolutional autoencoder) 29, SETE (gradient boosting decision tree) 30, and 
TcellMatch (multiple deep learning architectures) 16. While the specific modelling approaches of these 
tools differ, they share the same core approach of taking a set of TCR sequences (and optionally VDJ gene 
usage) that are individually annotated, or labeled, with antigen binding information and using these 
labelled examples to train a classifier predicting binding. This approach of using only labelled data is known 
as supervised learning. However, many of the TCR sequences that scientists have collected do not have 
corresponding antigen labels required for such supervised approaches. Furthermore, it is likely that 
existing labels are incomplete owing to cross-reactivity. Thus, there is a unique opportunity to develop 
new approaches that leverage this wealth of unlabeled data in concert with labelled examples to improve 
TCR models’ robustness and generalizability.  

This challenge of using unlabeled data to build models is a burgeoning field of study within the broader 
machine learning community. A notable recent innovation in this domain is the Bidirectional Encoder 
Representations from Transformers (BERT) architecture, originally developed for natural language 
processing tasks 31. Colloquially, BERT is a highly expressive model trained to understand the grammatical 
structure of languages using large, heterogeneous collections of unlabeled sequences – a process more 
formally known as pre-training. This general understanding then serves as a robust starting point for 
quickly and effectively targeting more specific tasks like predicting whether text exhibits positive or 
negative sentiment. While BERT was originally designed to model sequences of words comprising human 
language, BERT and its related architectures have recently been successfully repurposed for modelling 
biological sequences like DNA 32 and proteins 33 34 35. 

Inspired by the challenges of TCR analysis and the success of these machine learning approaches, we 
present TCR-BERT, a modified BERT architecture trained specifically on TCR amino acid sequences. TCR-
BERT explicitly leverages unlabeled TCR sequences to achieve state-of-the-art performance on a wide 
variety of downstream tasks and applications in TCR analysis. First, TCR-BERT enables class-leading 
prediction of TCR specificity. These predictors stand out in their flexibility and generalizability, particularly 
when trained and evaluated across different patients. We also show that TCR-BERT’s learned embedding 
can be used to identify sets of TCRs likely to share antigen specificities, and that TCR-BERT provides 
tangible improvements over prior tools with similar aims. We then demonstrate that in enabling these 
advances, TCR-BERT learns to focus on residues with well-established biophysical importance despite 
being given only raw, unannotated amino acid sequences. We also present a proof-of-concept showing 
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how TCR-BERT can serve as foundation for future technologies, such as by facilitating in silico design of 
novel TCR sequences with predetermined, desirable antigen binding characteristics. Overall, we believe 
TCR-BERT is an important step towards a generalizable computational understanding of TCRs that enables 
advances in computational biology, biological understanding, and clinical applications.  

Results 

TCR-BERT leverages large, unannotated datasets to learn representations of TCRs 

TCR-BERT is built upon a modified BERT architecture (see Methods for details) that takes TCR amino acid 
sequences as input (e.g., CASRPDGRETQYF). We pre-train TCR-BERT to capture the language of TCR 
sequences by optimizing two objectives sequentially. First, we use unlabeled TCR sequences to learn the 
underlying grammar of the naturally occurring TCR sequence space. We randomly hide 15% of the 
residues in each sequence and train TCR-BERT to fill in these hidden amino acids based on surrounding 
residues. Critically, this masked amino acid (MAA) pre-training does not require knowledge of the antigen 
binding partners of each TCR sequence. MAA pre-training is performed using a set of 88,403 
predominantly human TRA and TRB sequences drawn from the public VDJdb 36 and PIRD 37 datasets (Figure 
1). These sequences span a wide range of known and unknown antigen specificities, as well as other 
phenotypes like HLA alleles. 

After MAA prediction, we leverage the fact that some TCRs are labelled with known antigen binding to 
train TCR-BERT to predict antigen specificity given TCR sequence. We use 4,365 human TRB sequences, 
each binding to one of 45 antigen labels derived from the PIRD dataset (Figure 1, see Methods for 
additional details). Although this antigen classification pre-training step uses relatively few examples, it 
provides substantial benefits to TCR-BERT (see following results section). However, since antigen 
classification pre-training only considers TRB sequences (as there are insufficient labelled TRA sequences), 
TCR-BERT is better suited for processing TRB sequences after this pre-training step. For applications 
studying both TRA and TRB sequences, we recommend using the version of TCR-BERT pretrained only on 
MAA.  

We performed several evaluations to check the quality and generalizability of TCR-BERT’s pre-training 
using a new dataset of (n=17,702) TRA/TRB sequence pairs from mice infected with lymphocytic 
choriomeningitis virus (LCMV) clone 13 antigen GP33, a model of chronic viral infection (see Methods for 
additional details). This dataset is fully external to model training and is murine whereas 97% of TCR-
BERT’s pre-training data comes from humans. Nonetheless, TCR-BERT accurately predicts masked amino 
acids for both TRA and TRB sequences (Supplementary Figure 1A) after MAA pre-training, suggesting that 
the model has learned a generalizable TCR grammar. After classification pre-training, we visualize the 
amino acid embedding vectors that TCR-BERT has learned and observe expected separation by 
biochemical properties (Supplementary Figure 1B). We additionally take the murine LCMV dataset, use 
TCR-BERT to generate an embedding vector for each TRB sequence, and visualize the embeddings using 
UMAP 38 (Supplementary Figure 1C). We observe that TCR-BERT’s sequence embedding reflects sequence 
similarity (Supplementary Figure 1C, 1D). As sequence similarity is a known predictor of similar antigen 
binding affinities 15 39, this suggests that TCR-BERT’s sequence embeddings capture meaningful structures 
and relationships within the TCR sequence space and are likely a powerful basis for predicting antigen 
affinity – a topic that we explore further in the following section. 

TCR-BERT enables state-of-the-art antigen specificity classifiers 

After pre-training, we use TCR-BERT as a basis for building classifiers to predict whether a given TCR 
sequence can bind to a specific antigen. For this, we treat TCR-BERT as a fixed black box for generating 
embedding vectors for TCR sequences (Supplementary Figure 2). We project the TCR embeddings onto its 
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top 50 principal components (PCs) and train a support vector machine (SVM) to predict whether TCRs 
bind to a specific antigen. We refer to this classification module as PCA-SVM (see Methods for additional 
details).  

To evaluate the efficacy of applying PCA-SVM to TCR-BERT’s embedding, we perform antigen cross 
validation. For a subset (n=26) of the 44 antigens used in antigen classification pre-training with at least 
20 known binding TRBs, we repeat our second antigen classification pre-training step excluding that 
antigen and its associated TRBs. We then use the resulting model to embed and classify the held-out TRBs 
against a negative set of human TRBs of undetermined affinity using PCA-SVM. This negative set is 
randomly sampled from the TCRdb database 40, which is not seen in pre-training, at a ratio of 5 negatives 
to each binding TRB (see Methods for additional details). Using a random 70/30 train/test split, we 
observe a test set area under the precision-recall curve (AUPRC) of 0.847 averaged across the 26 antigens, 
compared to an AUPRC of 0.167 expected for a random classifier.  

We similarly applied antigen cross-validation to several other antigen-TCR classifiers to contextualize TCR-
BERT’s performance. As a baseline, we evaluated a supervised convolutional network (ConvNet) deep 
learning model classifying antigen binding/non-binding given a TRB sequence (see Methods for details). 
We train this ConvNet from scratch (i.e., without pre-training) to classify each of the 26 antigens’ TRBs 
against the negative background described above. For 25 of the 26 antigens, TCR-BERT exhibits improved 
AUPRC compared to this supervised ConvNet (Figure 2A, 𝑝 = 4.67 × 10!", Wilcoxon test). We find similar 
improvements when comparing TCR-BERT against other supervised methods like SETE 30 (Supplementary 
Figure 3A). These results suggest that pre-training strategies provide tangible performance improvements 
over supervised models trained from scratch. 

As another benchmark, we apply the same PCA-SVM classification module, but rather than using TCR-
BERT’s embeddings, we use embeddings generated by ESM, a substantially larger transformer model 
trained on general amino acid sequences 33. We find that for all 26 antigens, TCR-BERT’s embedding yields 
improved AUPRC compared to ESM’s embedding (Figure 2B, 𝑝 = 4.15 × 10!", Wilcoxon test). This result 
holds for other general-purpose amino acid transformer models like TAPE 34 (Supplementary Figure 3B). 
In these comparisons, the classifier module is held constant while the embedding representation varies, 
thus demonstrating that TCR-BERT’s TCR-specific pre-training results in a more powerful TCR embedding 
representation compared to general-purpose protein language models. 

Antigen cross-validation also allows us to investigate the impact of each of our two pre-training steps on 
the quality of TCR-BERT’s embeddings. We compare PCA-SVM’s performance with an embedding trained 
using only MAA, as well as an embedding trained using only antigen classification (holding out antigens as 
necessary). We find that for both these pre-training ablations, AUPRC classifying unseen antigens is 
significantly reduced (Supplementary Figures 3C, 3D). This highlights the importance of both our pre-
training steps in learning an embedding that generalizes to unseen antigens and their associated TRBs. 

We additionally sought to understand how well these performance gains would generalize not just across 
random data splits, but across patients. As each individual’s immune system independently generates TCR 
sequences, cross-patient generalization better captures how such antigen classifiers might be applied in 
a clinical setting. We focus on (n=214) human TRB sequences binding to the NP177 influenza A viral 
antigen (antigen sequence LPRRSGAAGA) 15, which was not seen during pretraining. These TRBs are 
primarily derived from a single patient (n=176), whose data we use for training, with the remaining (n=38) 
TRBs derived from 4 other patients, whose data we use for testing. Since this dataset only provides 
positive examples, we again add TCRdb human TRBs as background negatives at a ratio of 5:1. Among all 
evaluated models (PCA-SVM on TCR-BERT, PCA-SVM on ESM, PCA-SVM on TAPE, ConvNet, and SETE), only 
PCA-SVM on TCR-BERT and PCA-SVM on TAPE meaningfully generalize to test patients, with TCR-BERT 
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providing the best AUPRC on test patients (Figure 2C). Notably, both models with nontrivial generalization 
were pre-trained on large corpuses of unlabeled data. This strongly suggests that pre-training is critical 
for robust generalizability. Neither supervised approach (ConvNet and SETE) performs better than random 
on test patients, suggesting that using only direct supervision leads to overfitting to the training patient’s 
TRBs.  

Finally, we evaluate classification performance on the murine LCMV GP33 dataset. This dataset uniquely 
provides antigen binding annotations for many (n=17,702) TRA/TRB pairs. To leverage the TRA/TRB pairing 
information, we fine-tuned two separate copies of TCR-BERT, both initialized using weights from MAA 
pretraining, to embed TRA and TRB sequences, respectively. These two embeddings are concatenated 
and passed through a single-layer fully-connected classification head (see Methods for additional details). 
We compare this method to several approaches. As a baseline, we train a ConvNet with two convolutional 
“arms” corresponding to the TRA and TRB, respectively. We evaluate TAPE and ESM by applying PCA-SVM 
on their concatenated representations of TRA and TRB. We compare our method against DeepTCR, a 
variational autoencoder embedding TRA/TRB pairs 29, which we train on other murine TRA/TRB pairs 
before embedding our GP33 TCRs (see Methods for details). We then apply a PCA-SVM classifier on these 
embeddings. Compared to all methods, TCR-BERT achieves best-in-class performance predicting binding 
to GP33 with an AUPRC of 0.608 (Figure 2D, Supplementary Figure 4). This strong performance is largely 
a consequence of TCR-BERT’s pre-training: similarly training an architecturally identical but randomly 
initialized classifier achieves a substantially lower test AUPRC of only 0.462. 

Overall, our results demonstrate that TCR-BERT provides a strong, versatile foundation for building 
antigen classifiers for TCR sequences. This can be achieved via treating TCR-BERT as a black box for 
generating sequence embeddings, which is typically optimal for smaller datasets, or by using larger 
datasets to fine-tune TCR-BERT, as we performed for LCMV GP33. Furthermore, we demonstrate that 
TCR-BERT can be flexibly used to predict binding for TRB sequences alone, or for TRA/TRB sequence pairs.  

TCR-BERT facilitates unsupervised, explorative analyses of TCRs 

In many cases, researchers may not know a priori which specific antigen(s) to predict TCR affinity for, 
necessitating more exploratory analyses of TCR sequence data. One common task is to identify groups of 
TCRs likely to share antigen binding properties, which can help identify motifs and often provides a more 
succinct representation of the TCR repertoire than analyzing each individual clone. TCR-BERT facilitates 
such analyses via its TCR sequence embeddings. To illustrate this, we embed (n=2,067) human TRB 
sequences 15 using TCR-BERT (pre-trained on MAA and classification) and visualize each TRB using UMAP 
coloring by known antigen (Figure 3A). We see that TCR-BERT’s embedding highlights several distinct 
specificity groups. For example, the group of TRBs corresponding to the BMLF1 Epstein Barr virus (EBV) 
antigen (antigen sequence GLCTLVAML) in the upper region of the plot corresponds to the illustrated 
motif (Figure 3A, top right). This motif matches one of the most conserved public (i.e., shared between 
multiple individuals) EBV TRBs 41, which may contribute to its separation from other TRB sequences in this 
set.  

In addition to examining these embeddings visually, we can also algorithmically group these TCRs using a 
clustering algorithm like Leiden 42. We evaluate this approach using NP177-binding TRB sequences 
intermixed with randomly sampled endogenous human TRBs. We previously used this dataset to evaluate 
classification, but here we are instead interested in quantifying how well TCR-BERT’s embedding 
clustering separates antigen versus background TCRs. Ideally, every cluster of TRBs should 
homogeneously consist of either antigen-binding or background sequences; this is measured by the 
percent correctly clustered metric, originally proposed by the authors of GLIPH 15. Additionally, each TRB 
should be clustered with other TRBs, as assigning each TRB its own group would trivially achieve perfect 
accuracy; this is captured by the percent clustered metric, also proposed by the authors of GLIPH. We 
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examine several clustering resolutions for TCR-BERT’s (pretrained on MAA and classification) 
NP177/background embedding, which yields a smooth tradeoff between percent clustered and percent 
correctly clustered (Figure 3B, blue). We use GLIPH 15, a well-known methodology for grouping TCRs using 
sequence similarity heuristics, to similarly generate TCR groups of varying granularities for these same 
sequences and similarly plot its relationship between percent clustered and percent correctly clustered 
(Figure 3B, orange). Comparing these two methods, clustering TCR-BERT’s embedding consistently 
produces improved results. For a target “percent clustered” of 50-80% of our input sequences, TCR-BERT’s 
clustering yields significantly higher clustering correctness within that interval than GLIPH (p=0.0061, 
Mann-Whitney test). This similarly holds for a target “percent clustered” of 80-100% (p=0.0027, Mann-
Whitney test). Furthermore, in several cases where a majority of TRBs have been clustered, GLIPH’s 
percent correctly clustered is worse than random chance (83.3%, as 5/6 of the data are negative 
background examples). More detailed plots including specific parameters used for each method are 
included in Supplementary Figures 5A and 5B. We also note that TCR-BERT enables these improvements 
while achieving faster runtime compared to GLIPH (Supplementary Figure 6). 

We repeated the TCR clustering comparison using a subset (n=2,443) of the murine LCMV GP33 TRBs as 
GLIPH cannot scale to feasibly run on the full dataset. Although this dataset provides paired TRA/TRB 
sequences, we focus on TRBs alone for compatibility with GLIPH. TCR-BERT (Figure 3C, blue) again 
provides improved clustering compared to GLIPH (Figure 3C, orange), which never clusters more than 
5.2% of sequences across the (n=18) cutoff values we evaluated. TCR-BERT (pretrained on MAA and 
classification, Figure 3C blue) provides a predictable tradeoff between percentage clustered and 
percentage correctly clustered. There are a few instances of erratic correctness values when TCR-BERT 
clusters 2% or fewer sequences, as a handful of mistakes can have an outsized effect on correctness when 
clustering so few sequences. Full details, including hyperparameters used, are included in Supplementary 
Figures 5C and 5D. We additionally explored leveraging TCR-BERT’s TRA embeddings for clustering, but 
this does not improve clustering metrics for this LCMV dataset. These two experiments across two 
different datasets suggest that TCR-BERT’s embedding can be leveraged to perform state-of-the-art 
exploratory visualization and clustering analyses of TRB sequences.  

TCR-BERT focuses on biologically relevant residues 

Thus far, we have shown that TCR-BERT is a versatile model that can be used for a variety of TCR analyses 
from predicting antigen specificity to exploratory clustering of TCRs. To better understand how TCR-BERT 
achieves these advances, we study the amino acid residues highlighted via TCR-BERT’s transformer 
attention mechanism. At a high level, attentions 43 dynamically capture how much a given token’s 
representation (here, our classification embedding) is influenced by representations of other tokens 
(here, each amino acid in the TCR).  

We examine the TCR-BERT variant pre-trained on MAA and fine-tuned to predict LCMV GP33 binding from 
TRA/TRB pairs. Examining test set TRA/TRB pairs of uniform length (12 and 14 residues for TRA and TRB, 
respectively), we average the fine-tuned TCR-BERT TRA/TRB submodules’ per-residue attentions across 
these examples (n=157 spanning 36 binding and 121 non-binding examples) which yields two matrices of 
TRA and TRB attentions, respectively (Figure 4A). At a per-residue scale, TCR-BERT’s attentions tend to be 
concentrated towards the central region of both the TRA and TRB. This aligns well with prior works 
describing a functional “hot spot” around central residues that enables fine discrimination of different 
antigens 44.  

TCR-BERT’s attentions can also be interpreted in the context of the structural interface between the TCR 
and pMHC. Intuitively, TCR residues physically proximal to the antigen should play a key role in 
determining specificity. We sought to validate this using three publicly available experimental structures 
profiling a similar LCMV GP33 system (PDB structures 5m00, 5m01, and 5m02, see Methods for additional 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.18.469186doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.18.469186
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

7 

details). We calculate, for each residue in the PDB structures’ TRA and TRB sequences, the minimum 
Euclidean distance to any residue in the antigen (Figure 4B and 4C, blue lines). Comparing this antigen-
distance to TCR-BERT’s averaged attention per position (Figure 4B and 4C, orange line), we find that 
attention is anti-correlated with distance to the antigen for both TRA and TRB chains. Antigens in the 
bottom quartile of distances relative to the antigen in each chain correspond to significantly higher 
attentions across these test examples (𝑝 = 4.6 × 10!#" for TRA, 𝑝 = 5.6 × 10!$# for TRB, Mann-Whitney 
test), indicating that TCR-BERT pays the most attention to TCR residues most physically proximal to the 
antigen – a pattern concordant with known principles of TCR specificity. We illustrate this relationship 
between attention and physical proximity in a render of the 5m00 experimental structure highlighting 
side chains for the antigen residues and TCR residues receiving, on average, the highest tercile of 
attentions per chain (Figure 4D, Supplementary Figure 7). Residues with greater attention, particularly 
those in the TRB chain (which is more proximal to the antigen than the TRA), are frequently directly in 
contact with the antigen sequence.  

TCR-BERT can facilitate TCR design 

Beyond achieving state-of-the-art results in classification and clustering, TCR-BERT enables novel 
computational approaches to important experimental and clinical challenges involving TCRs. Among 
these, one exciting domain is TCR engineering, which seeks to redirect T cell specificity by introducing 
synthetic TCR sequences into T cells. In principle, this strategy can boost T cells’ ability to recognize a given 
antigen, thus strengthening the immune system’s defense against specific pathogenic or malignant 
(cancerous) cells 45. This approach holds great promise in clinical treatments with targets ranging from 
cancers 46 47 to chronic viral infections like hepatitis B 12 and human immunodeficiency virus type 1 48. 
However, the process of designing synthetic TCR sequences remains challenging. We use TCR-BERT to 
develop a proof-of-concept computational approach to rapidly screening and refining such TCR 
sequences. Intuitively, we use TCR-BERT to drive an iterative in silico directed evolution process. We start 
with a set of TCR sequences with no observed binding to an antigen of interest and use a classifier (built 
using TCR-BERT) to rank these according to their predicted likelihood of binding. We use the sequences 
with the highest predicted binding likelihood to generate additional, similar sequences. This is done by 
sampling from TCR-BERT’s masked amino acid predictions for randomly hidden positions in each TCR, thus 
leveraging TCR-BERT’s learned language model to introduce TCR residue mutations traversing the 
complex manifold of endogenous TCRs. We repeat the ranking and sampling steps using these newly 
generated sequences as input, iterating until we arrive at a set of sequences with desirable predicted 
binding (Figure 5A, see Methods for additional details). Importantly, this process does not simply identify 
the strongest binders within its input, instead using that information to generate novel TCR sequences. 

We apply this procedure to engineer TRA-TRB pairs targeting GP33 binding using the version of TCR-BERT 
fine-tuned to predict LCMV GP33 binding from TRA-TRB pairs. We start with 100 TRA-TRB pairs with no 
measured binding drawn from the test set to ensure that TCR-BERT has never seen these sequences. We 
apply the directed evolution process described above and observe that the predicted GP33 affinity grows 
with successive iterations, reaching a minimum 95% predicted probability of binding after 7 iterations 
(Supplementary Figure 8A). These 50 generated TCRs share no clear sequence similarity to training 
examples with observed GP33 binding (Supplementary Figures 8B, 8C), indicating that our procedure 
generates novel TCRs not seen by the model. 

To show that we are generating reasonable candidates for binding GP33, we use BLAST 49 to match both 
our input TRB set and final engineered TRB set against all known murine TRB sequences (we could not 
find adequate data to similar evaluate TRAs, see Methods for additional details). TRBs in the final set not 
only produce more hits to TRBs previously found to bind GP33 in an experiment never shown to TCR-
BERT, but these hits are also more specific (indicated by significantly higher bit scores, Mann-Whitney 
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test, 𝑝 = 4.31 × 10!%, Figure 5B). Additionally, our engineered TRBs produce matches to 11 known GP33 
binders that were not matched by our starting set (Figure 5C, Supplementary Figure 9); these further 
illustrate that our TCR engineering process generates novel sequences.  

We additionally ran our TCR engineering procedure using a different set of starting sequences similarly 
drawn from non-binding test examples to further explore our procedure’s flexibility and generalizability 
(Supplementary Figure 10A). As before, we use BLAST to match the starting and final engineered TRBs 
against known murine TRBs and observe that our engineered sequences contain proportionally more 
GP33-binding sequences (Fisher’s exact test, 𝑝 = 1.17 × 10!&). The engineered sequences are distinct 
from previous sequences (Supplementary Figure 10B), indicating that TCR-BERT is capable of flexibly 
generating a range of motifs that consistently mirror known biological motifs with GP33 affinity. While 
this specific usage of TCR-BERT as a platform for TCR engineering requires extensive follow up work and 
experimental validation, we showcase it to demonstrate how TCR-BERT can be leveraged as a 
computational platform for future technologies. 

Discussion 

TCR-BERT is a large language model trained to model and embed T-cell receptor sequences. Compared to 
prior works using machine learning to predict TCR behavior, TCR-BERT is uniquely designed to leverage 
unlabeled data to learn a more general representation of TCRs, before being applied to or fine-tuned on 
specific downstream tasks. By leveraging this approach of unsupervised transfer learning, TCR-BERT 
enables state-of-the-art prediction of TCR-antigen binding and consistent, reliable grouping of TCRs likely 
to share antigen specificities. We further demonstrate that TCR-BERT enables these broad advances by 
focusing on structurally relevant residues with known biological importance for binding, despite being 
trained on only raw sequences that do not intrinsically carry this information. This suggests that TCR-BERT 
is likely learning general patterns across TCRs. Finally, we show how TCR-BERT can enable novel 
applications that go beyond canonical tasks like classification and clustering, such as computationally 
engineering TCR sequences with desirable binding characteristics.  

There are several directions for improving and extending TCR-BERT. Most directly, our proof-of-concept 
TCR engineering work requires extensive follow-up experimental validations. More broadly, TCR-BERT 
does not leverage VDJ gene usage information in its design. Previous works have found that these 
additional annotations can improve antigen binding prediction performance compared to using TCR 
sequences alone 29, but the optimal approach for integrating these annotations into a large language 
model is an open question. From a usability standpoint, it can be difficult to understand exactly how TCR-
BERT embeds or classifies a TCR sequence, especially when compared to traditional methods built around 
more transparent metrics like sequence similarity. Future work in model interpretability could alleviate 
this. Architecturally, research studying transformers is still rapidly evolving, so new methods for designing 
and training these large language models may be applicable to refining TCR-BERT. Researchers have also 
recently developed methods to use transformer models like TCR-BERT to study the evolution of protein 
sequences 50 – applying these to TCR-BERT may yield novel biological insights into the evolution and 
selection of TCRs 51. Finally, TCR-BERT would also greatly benefit from additional training data, especially 
as new technologies emerge that improve scalability of profiling TCR sequences along with their antigen 
specificities 52. Such data could also be used to extend TCR-BERT to include not just alpha/beta dimers, 
but gamma/delta dimers as well. 	

Beyond its direct contributions to antigen binding prediction and TCR clustering, we believe TCR-BERT 
represents a conceptual advance in the computational analysis of TCR sequences. Rather than training a 
new model from scratch for each specific antigen, TCR-BERT is a single model that can serve as a robust 
starting point for a wide variety of downstream tasks. This simultaneously reduces the amount of data 
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required to build effective models, while lessening the amount of time and energy spent designing 
customized features, resulting in improved models that are easier to develop and share. It is our hope 
that this leads to more exploration of innovative applications for our growing computational 
understanding of TCR sequences, particularly in how we can leverage this understanding to inform our 
understanding of T cell function, and how we can ultimately apply these developments to enhance 
immunotherapies and patient care. 
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Materials & Methods 

Datasets & preprocessing 

From the pan immune repertoire database (PIRD) 37, we use the TCR-AB database containing 47,040 TRB 
sequences and 4,607 TRA sequences. Among these, 605 examples are explicitly paired TRA and TRB, and 
8,429 examples have annotated antigen specificities. These annotated antigen specificities span 73 unique 
antigens. We use the PIRD dataset for masked amino acid modelling pre-training, and its labels for antigen 
classification pre-training and antigen cross-validation.  

VDJdb is a curated dataset of T-cell receptor sequences with known antigen specificities 36. This dataset 
consists of 58,795 human TCRs and 3,353 mouse TCRs. More than half of the examples are TRBs (n= 
36,462) with the remainder being TRAs (n= 25,686). Although these sequences are all labelled with a 
known antigen binding partner, we only used this dataset during the masked amino acid pre-training step. 
We empirically found that including this dataset’s labels did not improve the usefulness of TCR-BERT’s 
embedding for downstream classification or embedding tasks (data not shown). 

The TCRdb dataset 40 consists of 139,00,913 TRB sequences of unknown antigen binding affinity. While 
we attempted to leverage TCRdb in our MAA pre-training step, we empirically found that doing so greatly 
increased training runtime without yielding improved downstream results (data not shown). Rather, we 
use TCRdb as a pool of unseen, naturally occurring human sequences of unknown antigen binding affinity. 
We sample from these sequences to create a “negative” set of TCR sequences. This is useful for building 
classifiers from datasets that only describe TCR sequences with known binding affinity (i.e., a positive 
label), but does not describe TCR sequences with no known binding affinity (i.e., a negative label). These 
negative sets are sampled at a ratio of 5 TCRdb negatives to each known positive example. This ratio is a 
round value that approximates the proportion of positive examples in the relatively exhaustive LCMV 
dataset, discussed below. 

The murine LCMV GP33 dataset consists of T cells from the lung, liver, and spleens of mice infected with 
either LCMV Armstrong or LCMV Clone 13. Following tissue dissociation, single cell suspensions were 
stained with class I tetramer H-2Db LCMV GP33-41 (KAVYNFATC) (PE) and then sorted via flow cytometry 
as tetramer high, mid, or negative. TCR sequencing was performed using the 10X 5’ Single Cell Immune 
Profiling Solution Kit (v1.1 Chemistry) using the 10x Chromium Single Cell V(D)J Enrichment Kit for mouse 
T cells, according to the manufacturer’s instructions. Single-cell TCR-seq libraries were sequenced on an 
Illumina NovaSeq S4 sequencer using the following read configuration 26bp Read1, 8bp i7 Index, 91bp 
Read2. TCR reads were aligned to the mm10 reference genome and consensus TCR annotation was 
performed using cellranger vdj (10x Genomics, version 3.1.0). We keep only unique TRA/TRB clones where 
80% of annotated cells assigned the same label, in which the clone is assigned the majority label. Overall, 
this results in (n=17,702) unique TRA/TRB pairs with consistent labels that we use for model training and 
evaluation. Among these, 13% (n=2306) are observed to have mid or high binding – we consider these 
“positive” examples of TRA/TRBs binding GP33. This dataset is also being used for a separate, unrelated 
manuscript under preparation for submission; this manuscript contains more details surrounding exact 
experimental conditions for gathering this data as well as details on data access. 

For all TCR sequence records, we exclude any examples that include residues outside the set of 20 
standard amino acids, e.g., wildcard residues that indicate variability. 

Modelling, pre-training, and layer selection 

TCR-BERT is implemented in Python primarily using the PyTorch 53 and Transformers libraries 54. TCR-BERT 
uses a lightly modified version of the BERT language modelling architecture. We provide a brief description 
of BERT and general transformer models here; for full details, please refer to the original BERT manuscript 
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31. Transformer models 55 use a series of blocks that apply attention and feed-forward layers. Attention 
attempts to model pairwise interactions in an input sequence by learning how strongly the embedding 
representation of each token should be influenced by the embedding of other tokens (including itself). 
Applying several layers of such blocks allows models like BERT to learn increasingly complex interactions 
between tokens that ultimately capture higher-order concepts like grammatical structure. These 
transformer networks have been shown to outperform more conventional recurrent and convolutional 
models in various natural language problem settings. 

TCR-BERT’s input is TCR sequence of length M, formatted as a series of M tokens spanning the set of 20 
amino acids. These input tokens are then padded with special tokens: a classification token C as a prefix, 
and a separator token S as a suffix. The padded input tokens are then passed through a trained embedding 
layer that maps each token (amino acid) to a continuous representation of 768 dimensions. As this token 
embedding does not capture positional information, our TCR-BERT model follows the BERT model in 
adding a positional encoding to the amino acid embedding. This summed sequence embedding is then 
fed through a series of 12 transformer blocks to arrive at the overall sequence embedding. This sequence 
embedding represents each input amino acid as a (𝑀 + 2) × 768 matrix. The sequence embedding can 
then be fed into various “heads” that perform pretraining and downstream tasks such as masked amino 
acid prediction or sequence classification. 

We pre-train TCR-BERT using two objectives optimized sequentially. First, we pretrain using a masked 
amino acid (MAA) modelling objective, where we randomly hide, or “mask” 15% of the amino acids in 
each TCR amino acid sequence in the training set, and train TCR-BERT to predict these masked amino 
acids. Architecturally, this is done by appending a MAA “head” network to the previously described 
transformer network. This MAA head is a simple, fully connected layer that maps TCR-BERT’s per-residue 
hidden representation to logits (20 dimensions, corresponding to each amino acid), followed by a softmax 
activation. MAA pretraining is done using both TRA and TRB sequences from the VDJdb and PIRD datasets 
and aims to leverage the large amount of TCR sequences with (potentially) unknown antigen specificity 
to learn the “grammar” of a valid TCR sequence. TRA and TRB sequences are given to the model without 
features or flags distinguishing the two. We use a random 85/15 train/test split for MAA pre-training and 
tune hyperparameters based on test set loss. We perform grid search across the following 
hyperparameters with final chosen values in bold. Several of these hyperparameters describe 
architectural configurations (e.g., dimension of the hidden representation) whose values apply to 
downstream training/tasks as well. Default values for the BERT architecture are indicated. 
Hyperparameters and architectural configurations not indicated are left at their default values. 

• Hidden representation dimensionality: [144, 384, 768] (BERT default: 768) 
• Intermediate representation dimensionality: [1536, 3072] (BERT default: 3072) 
• Number of attention heads: [6, 8, 12] (BERT default: 12) 
• Number of transformer layers: [8, 12] (BERT default: 12) 
• Batch size: [128, 256] 
• Learning rate warmup (number of training steps to linearly “ramp up” learning rate to specified 

value): [0, 0.1] 
• Training epochs: [10, 15, 25, 50, 100] 
• Learning rate: [2e-5, 5e-5] 

We also reduce the maximum positional embedding length to be 64 (as opposed to BERT’s default 
maximum of 512) to reflect the relatively short TCR sequence lengths compared to sentence lengths in 
natural language. We use linear learning rate decay to 0 over training epochs, coupled with the AdamW 
56 optimizer and negative log likelihood loss. 
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The second objective is a multi-class classification task where we train TCR-BERT to classify each input TRB 
sequence as binding to a one of a set of profiled known antigens. We focus on TRB sequences exclusively, 
as very few TRA sequences have annotated antigen specificities (and even fewer paired TRA-TRB examples 
have such annotations). To train this objective, we subset the antigens represented in the PIRD dataset to 
include only antigen sequences with at least 6 positive examples; antigens with fewer positive examples 
are aggregated into a single “other” label. This results in 44 antigen labels and 1 “other” antigen label for 
a total of 45 labels, distributed among with 6,235 TRB sequences. These are randomly split into training, 
validation, and test sets using a 70/15/15 split. The antigen classification “head” consists of a “pooling” 
layer (a feedforward network projecting the 768-dimensional classification token embedding into 768 
dimensions with Tanh activation) and a “classifier” layer (a feedforward network projecting the 768-
dimensional output of the pooling layer into the number of labels). As this pre-training objective predicts 
a single antigen for each TRB, we use a softmax activation coupled with a negative log likelihood loss. For 
this pre-training objective, we perform grid search over the following hyperparameters optimizing for 
validation set AUPRC, with selected values in bold: 

• Learning rate: [2e-5, 5e-5] 
• Batch size: [128, 256] 
• Learning rate warmup: [0, 0.1] 
• Training epochs: [10, 15, 25, 50] 

We additionally perform early stopping after no improvement in validation set AUPRC after 5 epochs. 

After these pre-training steps, we select a representation layer from TCR-BERT that is most conducive to 
downstream tasks like clustering or building classifiers. This is necessary as empirical works have found 
that the last layer of large language models like BERT are often too specialized for pre-training tasks to be 
generally useful for embedding new inputs. To do this, we sweep across the last seven layers of the model, 
use each layer to train a PCA-SVM classifier (see following section for full details) using the LCMV GP33 
dataset (using a random 70/15/15 train/valid/test split), and select the layer maximizing validation set 
AUPRC. We repeat this applying various levels of subsampling to the training data to choose a layer that 
consistently performs well regardless of the amount of data available. We find that the 8th layer is optimal, 
and we use this layer for all experiments that use TCR-BERT to generate embeddings (e.g., PCA-SVM, 
Leiden clustering, etc.), including for datasets other than LCMV. 

Downstream classifiers 

After pre-training, we leverage TCR-BERT’s learned representation using various downstream classifiers. 
One approach involves building classifiers directly on the embedding that TCR-BERT produces, treating 
TCR-BERT as a black box for generating TCR embeddings. We first average TCR-BERT’s representation of 
each amino acid in a TCR sequence (excluding special tokens like classification and separator tokens), 
using the optimal layer discussed above. We then use PCA to reduce the resulting representation’s 
dimensionality to the top 50 principal components (PCs) and train a support vector machine classifier with 
radial basis function kernel on this reduced embedding. This can theoretically be applied to either TRA or 
TRB sequence alone or both, though we focus on embedding the TRB sequence in our work. Using PCA to 
summarize the embeddings helps the SVM to better focus on major sources of variation in the embedding. 

TCR-BERT can also be fine-tuned to perform classification. Rather than treating TCR-BERT as a fixed black 
box for generating continuous embeddings from discrete amino acid sequences, fine-tuning modifies TCR-
BERT using the pre-trained parameters as a starting point. In our work, we fine-tune TCR-BERT to perform 
antigen binding prediction given a TRA and TRB sequence pair. Architecturally, this paired prediction 
model is comprised of two separate TCR-BERT transformers individually responsible for embedding the 
TRA or TRB sequence, respectively. Both are initialized using weights from the masked amino acid 
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pretraining step, as MAA pre-training is agnostic of TRA/TRB identity. We extract the initial “classification” 
token embedding from both the TRA and TRB, concatenate the two embeddings, and apply a fully 
connected layer mapping to two outputs with softmax activation to generate binding predictions. Notably, 
training this overall model tunes each encoder towards patterns specific to either the TRA or TRB. 
Hyperparameters for this model are selected maximizing validation set AUPRC using grid search over the 
following values (final values are in bold): 

• Learning rate: [5e-5, 3e-5, 2e-5] 
• Training epochs: [10, 25, 50, 100] 
• Dropout (in final fully connected layer, does not affect TCR-BERT itself): [0.1, 0.2] 

We train using a batch size of 128, linear learning rate decay over training epochs, and the AdamW 
optimizer. While we focus on fine-tuning targeting both TRA and TRB pairs, TCR-BERT could also be fine-
tuned to target only TRB sequences using a similar approach without concatenating multiple embeddings. 

In several of the experiments described in our work, we aim to build a classifier distinguishing human 
antigen binding TRB sequences from a random background, sampled at 5 background sequences per 
binding sequence. To create this random background, we randomly select TRB sequences from the TCRdb 
dataset 40, which contains human TRB sequences of undetermined antigen affinity (see above). This 
process attempts to mimic a natural sample of TCRs, where there are many “background” TCRs and a 
subset of TCRs with binding to a specific antigen. This ratio is similar to what is observed in tissues from 
severely diseased mice, though this ratio may be lower in humans.  

To evaluate classifier performance, we primarily focus on area under the precision recall curve (AUPRC). 
AUPRC is a much more informative metric in cases of extreme class imbalance towards negative cases 
(i.e., when there are very few positive labels). Such class imbalance is commonly observed in the context 
of TCR specificity, where most TCRs will not bind to an antigen. We also present area under the receiver 
operating characteristic (AUROC) in some instances for completeness. The expected AUPRC for a random 
classifier is the proportion of positive examples the dataset contains, and the expected AUROC is 0.5. 

Downstream clustering 

Our method for using TCR-BERT to embed TCR sequences for clustering analysis shares parallels with our 
method for building a SVM on top of TCR-BERT’s embeddings. As before, we use the previously identified 
optimal transformer layer and reduce the dimensionality of the embedding using PCA. We visualize the 
resulting embedding using Uniform Manifold Approximation and Projection (UMAP) 38 and cluster 
sequences using the Leiden clustering algorithm 42. To control the number and granularity of output 
clusters, we vary the resolution parameter for Leiden.  

To evaluate clustering performance, we use two metrics originally developed to quantify the performance 
of the GLIPH algorithm 15: percent clustered and percent correctly clustered. Each group of TCR sequences 
with 3 or more TCR sequences is considered “clustered.” The number of such clustered TCRs divided by 
the total number of TCRs gives the percent clustered. To calculate percent correctly clustered, we iterate 
over each cluster and for each TCR in that cluster, we retrieve its associated label (i.e., the antigen that 
that TCR binds to). If there is a dominant (≥50% occurrence) label within the cluster, the entire cluster is 
assigned that dominant label. Percentage correctly clustered represents the average accuracy of each 
clustered TCR evaluated against this majority label. As a toy example, consider a single cluster with 
sequences [𝑎, 𝑏, 𝑐, 𝑑, 𝑒] and corresponding antigens labels [𝑥, 𝑥, 𝑥, 𝑥, 𝑦]. The percent correctly clustered is 
80%, as this would be the accuracy if we had assigned the 𝑥 label to all points in the cluster.  

To evaluate clustering runtime, we use the UNIX “time” command with TCR-BERT and GLIPH methods. 
Timing includes the entire process from reading a new input of TRB sequences, calculating clusters, and 
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writing relevant output files. Runtime benchmarking is done with different subsets of murine LCMV GP33 
TRBs. All benchmarks are run using the same machine with an Intel i9-9960X processor, 128GB of RAM, 
and an Nvidia GeForce RTX 2080Ti GPU. No other foreground processes were run during benchmarking.  

Evaluated external methods 

We use various tools to contextualize TCR-BERT’s ability to perform classification and clustering. GLIPH 
was downloaded from the authors’ GitHub repository: https://github.com/immunoengineer/gliph. To 
cluster our TRB sequences, we run GLIPH using the “group discovery” script using varying values for the 
global convergence cutoff. We attempted to use the updated GLIPH2 algorithm 26, but this tool requires 
additional inputs, including Vb and Jb usage, which makes direct comparisons with TCR-BERT difficult.  

To evaluate against the Evolutionary Scale Model (ESM), we downloaded the ESM-1b model from the 
PyTorch model hub. To embed TCR sequences, we use the default mode of extracting the final transformer 
layer’s embedding and average the embedding for each amino acid to obtain the embedding for the 
overall sequence. This follows the recommendations given in the original authors’ GitHub repository 
https://github.com/facebookresearch/esm. These embeddings are then used for PCA-SVM.  

The TAPE model 34 was downloaded from the authors’ GitHub: https://github.com/songlab-cal/tape. We 
use the UNIREP version of their model to generate averaged embeddings using the default configuration. 
These embeddings are then used for PCA-SVM.  

The SETE model 30 does not provide a simple code interface to train and evaluate on a dataset; we instead 
used the authors’ manuscript and reference code from their GitHub repository: 
https://github.com/wonanut/SETE to re-implement their algorithm.  

The DeepTCR model 29 version 2.0.10 was installed via Python pip. To evaluate DeepTCR’s performance 
on our GP33 dataset, we first train DeepTCR on the bundled murine antigen data using TRA/TRB 
featurization (i.e., excluding VDJ annotations for comparability). We then freeze DeepTCR’s parameters 
and use the resulting model to embed our LCMV GP33 TRA/TRB sequence pairs. These embeddings are 
then used as input to PCA-SVM classification. We also evaluated other classifiers such as logistic regression 
on top of these embeddings, but PCA-SVM yielded the best performance.  

We developed an in-house convolutional architecture (ConvNet) as an additional baseline for predicting 
binary antigen binding given TCR sequences. This is motivated by the fact that many researchers have 
broadly demonstrated strong results using convolutional networks to perform classification and motif 
discovery within biological sequences 29 57 58. ConvNet maps amino acids to a 16-dimensional embedding, 
followed by convolutional layers mapping to 32, 32, and 16 channels with kernel sizes of 5, 5, and 3 
respectively. The output of the final convolutional layer is then passed through a fully connected layer to 
a 2-dimensional output with softmax activation to predict antigen binding probability. ConvNet is trained 
using the Adam optimizer 59 with cross entropy loss, a learning rate of 0.001, and a batch size of 512 along 
with early stopping after 25 epochs of no improvement to validation AUPRC. When training on paired 
TRA/TRB sequences, we modify ConvNet to learn a separate embedding and convolutional portion for 
each chain. The final convolution embeddings are then concatenated and input to a single fully connected 
layer with softmax activation for output probabilities.  

Interpreting and contextualizing model attentions 

To obtain TCR-BERT’s attention across TRA and TRB chains, we use the version of TCR-BERT fine-tuned to 
perform LCMV GP33 antigen prediction. Recall that this model contains two fine-tuned variants of the 
TCR-BERT model embedding TRA and TRB sequences, respectively. Thus, for each chain within the TCR, 
we examine the respective fine-tuned TCR-BERT variant and extract the model attentions from the first 
classifier token at the last transformer layer for each of the 12 attention heads. We then trim these 
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attentions to the length of the input 𝐿 (excluding padding tokens). This results in a matrix of shape 12 × 𝐿 
for each chain in each example. This approach is heavily inspired by the bertviz library 60.  

We average these attention matrices across test set examples to paint a clearer picture of typical TCR-
BERT attentions. For this, we restrict to test examples with the same length TRA and TRB (n=157, 12 and 
14 residues for TRA and TRB, respectively). Test set examples are used as they are not seen for training or 
hyperparameter tuning, and thus represent a more robust evaluation that more closely describes 
potential real-world use. When contextualizing TCR-BERT’s attentions, we average across the 12 attention 
heads to obtain a vector of length 𝐿.  

We contextualize TCR-BERT’s per-residue attentions using the antigen distance of each residue, computed 
from the 3D structure of the MHC-antigen-TCR complex. We define antigen distance as the minimum 
Euclidean distance between a given TCR residue and any residue in the antigen peptide. Each residue’s 
3D coordinates are summarized as an average of the atoms comprising the residue to alleviate 
computationally intensive pairwise atom calculations. We apply this to Protein Data Bank (PDB, 
https://pdb101.rcsb.org/) 61 structures 5m00, 5m01, and 5m02. These three structures exhibit minor 
differences from our dataset. They study a slightly modified LCMV GP33 antigen (KAVANFATM versus our 
antigen sequence KAVYNFATC) interacting with the TRA/TRB pair CAALYGNEKITF/CASSDAGGRNTLYF (also 
of lengths 12 and 14 residues, respectively). This specific TRA/TRB pair is not predicted to bind to our GP33 
antigen, but it is unclear whether this is driven by the differences in the specific antigen or by model error. 
We believe that our results should be robust despite these minor differences, as the overall structure of 
these interactions should be similar.  

TCR engineering 

Our in silico TCR engineering process begins with a set of starting sequences with no binding affinity for 
the antigen in consideration. In our case, this consists of 100 non-binding TRA/TRB pairs randomly selected 
from the LCMV GP33 test set. Selecting from the test set ensures that the model has not been trained or 
tuned on these specific sequences, as would be the case for real-world usage. We then give these TRA/TRB 
pairs to the version of TCR-BERT fine-tuned to predict LCMV GP33 binding form TRA/TRB pairs, ranking 
them by their predicted GP33 binding. We take the top half of these sequences (n=50) and use them as 
seeds to generate a set of new sequences (n=100). 

To sample a new TRA/TRB pair, we start by randomly selecting one of the given seed sequence pairs. We 
then use TCR-BERT to mutate both the TRA and TRB, introducing two amino acid mutations to each chain. 
Mutations are introduced incrementally by choosing a single random position within the chain, masking 
that position, and giving the masked input to TCR-BERT (pretrained on MAA only) to predict the masked 
amino acid. This yields a probability distribution describing the most likely amino acids given the rest of 
the sequence. We rely on this prediction to explore the “grammar” of valid TCRs, such that we do not 
generate sequences that are untenable (e.g., a sequence entirely consisting of a single repeated residue). 
We randomly sample from the top 5 amino acids in this distribution.  

These (n=100) generated TCR chains are then given to TCR-BERT to re-rank, and the process of using the 
top sequences to re-generate new TCR chains with (hopefully further) enhanced binding is repeated. This 
cycle is iterated until the predicted binding converges to a satisfactorily high value.  

We use BLAST 49 to check the resulting TRB sequences against known murine TRB sequences. We construct 
a custom BLAST database using all protein sequences from RefSeq protein matching the query string “t 
cell receptor beta chain[All Fields] AND "Mus musculus"[porgn]” (n=2467). We then use BLAST version 
2.5.0 to match sequences against this database using an E-value cutoff of 0.001. For a baseline 
comparison, we ran the top 50 predicted GP33 binding starting sequences through BLAST as well against 
this same database. We compared the number of resulting GP33-related hits versus other, non-related 
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hits for the starting and final BLAST matches using Fisher’s exact test. We additionally compare the GP33-
related bit values (proportional to the log-size of the database required to produce such a hit by chance) 
corresponding to matches to the starting set, and matches to the engineered set, using a Mann-Whitney 
test. 

Miscellaneous external libraries 

Baseline neural networks and fine-tuned TCR-BERT models were developed using version 0.10.0 of the 
skorch library. 3D protein structures are visualized using PyMOL (The PyMOL Molecular Graphics System, 
Version 2.5 Schrödinger, LLC.). Motif logos are generated by using MUSCLE (version 3.8.1551) 62 to 
generate a multiple sequence alignment that is visualized using the Logomaker Python package 63. All 
other plots were generated using the matplotlib 64 and seaborn libraries. All metrics were computed using 
the scipy 65, scikit-learn 66, and numpy 67 libraries. We additionally use scanpy (version 1.7.1) and anndata 
(version 0.7.5) to simplify implementation of select clustering analyses 68. 

Code and model availability 

Code implementing the TCR-BERT model and all analysis (antigen classification, clustering, TCR 
engineering, and model attention interpretation) is available from GitHub at 
https://github.com/wukevin/tcr-bert. Trained models are publicly available from the HuggingFace online 
model hub. Specifically, the version of TCR-BERT pre-trained on MAA and antigen classification is available 
at https://huggingface.co/wukevin/tcr-bert, and the version of TCR-BERT pre-trained on MAA only is 
available at https://huggingface.co/wukevin/tcr-bert-mlm-only. Please refer to our GitHub repository and 
the HuggingFace transformers library (https://huggingface.co/transformers/index.html) for complete 
usage details.  
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Figures 

 
Figure 1: TCR-BERT leverages self-supervised pretraining to model TCRs.  

TCR-BERT takes a T-cell receptor amino acid sequence and generates a continuous embedding that can 
be used for downstream tasks. To pre-train TCR-BERT, we first perform masked amino acid prediction, 
training TCR-BERT to predict a masked or hidden amino acid (“.” in the input) based on surrounding amino 
acids, thus learning the “grammatical” structure of naturally occurring TCRs. This is done over a large 
corpus of TRA and TRB sequences with no MHC or HLA restrictions and crucially does not require 
knowledge of antigen binding affinities (left panel). Next, we take this model and further train it to predict, 
across a set of 45 antigen labels, the antigen that a given TRB amino acid sequence binds to (center panel). 
After checking pre-training’s efficacy (Supplementary Figure 1) and selecting an optimal representation 
layer for downstream tasks (Supplementary Figure 2), TCR-BERT can be used for a variety of TCR analyses, 
including predicting antigen binding and clustering TCRs (right panel). 
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Figure 2: TCR-BERT can be used to build state-of-the-art classifiers predicting antigen binding. 

(A) Antigen cross validation comparing PCA-SVM on TCR-BERT embeddings (y-axis) to a baseline 
supervised convolutional neural network (ConvNet, x-axis). Each point represents test AUPRC 
classifying a single antigen using each of the two methods. Larger points indicate antigens with 
more training examples available (log-scaled). TCR-BERT delivers improved performance (i.e., 
above the orange line indicating equal performance) in 25/26 instances. We observe similar 
improvements when comparing against other supervised methods (Supplementary Figure 3A). 

(B) Antigen cross validation applying PCA-SVM to our TCR-BERT model (y-axis) compared to PCA-SVM 
on a similar language model targeting general amino acid sequences, ESM (x-axis). Each point 
represents AUPRC classifying a single antigen using PCA-SVM. In all cases, TCR-BERT’s embedding 
enables substantially improved classification performance. This holds for other large amino acid 
language models like TAPE as well (Supplementary Figure 3B), which suggests that TCR-BERT’s 
specialized pre-training is critical to achieving good performance on these hypervariable TCR 
chains.  

(C) We evaluate various antigen binding prediction methods’ ability to generalize across different 
patients. We train classifiers to predict TRB binding to the human NP177 antigen using a single 
patient’s data and evaluate these models on 4 test patients. Models that leverage pre-training on 
large datasets are shown in solid lines whereas supervised models are shown in dotted lines. TCR-
BERT and TAPE are the only methods that predict TCR-antigen specificity generalizably across 
patients, with TCR-BERT providing the best performance. On the other hand, both supervised 
methods perform worse than a random classifier, suggesting overfitting.  
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(D) Using a murine dataset profiling GP33 binding, we evaluate various models’ antigen binding 
predictions when given TRA/TRB sequence pairs. We fine-tune TCR-BERT to achieve class-leading 
performance (see also Supplementary Figure 4), as it did for previous TRB-only antigen binding 
prediction problems. As in panel (C), pre-trained models are shown using solid lines, and 
supervised models are shown in dotted lines.  
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Figure 3: TCR-BERT’s embedding enables clustering analyses of patient TCR sequences.  

(A) We use TCR-BERT to embed and visualize 2,067 human TRB sequences. Each point represents a 
TRB sequence, colored by its known antigen binding partner. Several groups of TRBs stand out. 
For example, the top clusters consistently binds the GLCTLVAML antigen (green) and corresponds 
to the displayed consensus motif, which is highly conserved across individuals. 

(B) To quantify the utility of TCR-BERT’s embedding for clustering, we study (n=217) TRB sequences 
binding the NP177 antigen along with a negative background of randomly selected human TRBs 
(n=1070). We evaluate several clustering resolutions for TCR-BERT (blue) and the popular existing 
method GLIPH (orange), plotting each method’s trade-off between percent clustered and percent 
correctly clustered. TCR-BERT consistently provides comparable or improved clustering. Within 
each range of percent clustered (delineated by dashed vertical lines), TCR-BERT achieves 
improved clustering accuracy (indicated p-values, Mann-Whitney test, see Supplementary Figures 
5A, 5B for additional details). 

(C) These improvements are consistent across different datasets, such as the LCMV GP33 murine 
dataset, subsampled to 2,443 TRBs, shown here. TCR-BERT (blue) provides more consistent 
clustering performance across a range of percent clustered values when compared to GLIPH 
(orange), which cannot cluster more than a handful of sequences. Note that variability in 
correctness at low percent clustered is the result of only a few TRBs being correctly or incorrectly 
classified. Plots comparing performance at detailed cutoffs are shown in Supplementary Figures 
5C, 5D. These improvements are achieved with drastically improved runtime scalability 
(Supplementary Figure 6).  
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Figure 4: TCR-BERT’s attentions reveal biologically meaningful learned patterns. 

(A) Heatmaps visualizing the attentions that TCR-BERT has learned for predicting LCMV GP33 binding 
after fine-tuning, averaged across test set TRA and TRB sequences of fixed length. The vertical axis 
indicates positions in the TRA (top) and TRB (bottom) sequence, and the horizontal axis illustrates 
each of the 12 attention heads within TCR-BERT. Attentions tend to be concentrated to the center 
of the TCRs, which corresponds to prior literature. 

(B) We relate these averaged attentions to biophysical structures of TCR-antigen binding using three 
empirical PDB structures (5m00, 5m01, and 5m02) profiling a similar GP33 system. Blue lines 
indicate, for each residue in the TRA, the minimum distance to the antigen in each experimental 
structure. The orange line indicates TCR-BERT attention for those same residues. TCR-BERT pays 
the most attention to residues closest to the antigen, i.e., residues that are also most likely to 
contact the antigen. 

(C) The same is true for the TRB sequence.  
(D) 3D structure showing the MHC (green), modified GP33 antigen (salmon), and TRA (pink) and TRB 

(yellow). Side chains are shown and highlighted for the antigen and the TCR residues receiving the 
top 33rd percentile of model attentions on average. The residues that TCR-BERT pays attention to 
are frequently in direct contact with the presented antigen; this is especially true of the yellow 
TRB chain, which is more proximal to the antigen. See Supplementary Figure 7 for additional 
views. 
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Figure 5: TCR-BERT enables in-silico engineering of novel TCR sequences 

(A) To engineer sequences with affinity for the GP33 antigen, we take 100 endogenous TRA and TRB 
pairs with no measured binding to GP33, use a classifier based on TCR-BERT to select the 
sequences most likely to bind, and use those sequences to sample new TCR sequences using TCR-
BERT’s masked amino acid predictions as a generative model. This directed evolution process is 
repeated to iteratively refine the pool of TCRs. This enriches for desirable binding properties and 
goes beyond simply choosing from the original inputs (Supplementary Figure 8). 

(B) To evaluate the efficacy of our TCR engineering process, we use BLAST to match both our starting 
and final engineered TRB sequences against previously identified murine TRBs. We find that final 
engineered sequences produce more significant hits to prior known GP33-binding TRBs (blue) 
compared to the starting set of TRBs (which also contains fewer hits). This is indicated by their 
significantly elevated bit scores, which indicate the log-size of the database needed to produce a 
comparable hit by random chance (displayed p-value, Mann-Whitney test). 

(C) Our in silico engineered sequences match several known GP33 binders that were not similarly 
matched by our starting sequences. These novel matches indicate that our TCR engineering 
process generates new yet biologically meaningful sequences. Here, we summarize these 
previously unobserved matches (bottom motif) as well as our generated sequences that bear 
significant similarity (top motif). These matches are individually illustrated in Supplementary 
Figure 9. We further show that we can generate additional motifs using different starting 
conditions (Supplementary Figure 10), thus demonstrating the flexibility of our approach.  
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Supplementary Figures 

 
Supplementary Figure 1: Validating TCR-BERT pretraining 

(A) TCR-BERT’s performance on masked amino acid prediction on an in-house LCMV GP33 murine 
dataset, which is not used for pre-training. One amino acid is masked from each input sequence, 
and the TCR-BERT’s top prediction is scored against the hidden amino acid using the BLOSUM62 
69 scoring matrix. Higher values indicate more biologically similar predictions. We compare TCR-
BERT’s performance to three baselines: predicting a random amino acid (random), predicting the 
most common amino acid regardless of positional information (common), and predicting the most 
common amino acids at each position (positional). This positional baseline is conceptually similar 
to using a multiple sequence alignment to generate predictions. TCR-BERT outperforms all 
baselines for predicting masked amino acids, which suggests that it successfully captures complex 
patterns in the grammar of TCR sequences. 

(B) TCR-BERT’s learned embeddings for each of the 20 amino acids, visualized using PCA. Points are 
colored by biochemical properties and labelled using standard one-letter abbreviations. We 
observe separation according to biochemical properties of these amino acids, such as by 
hydrophobicity along the x-axis. Biochemically similar residues also appear to have similar 
embeddings, e.g., alanine (A), leucine (L), and valine (V). 

(C) UMAP visualization of TCR-BERT’s embedding of the TRB sequences in the LCMV dataset. Each 
point represents one TRB sequence and is colored by Levenshtein edit distance to the randomly 
chosen “centroid” sequence (red). TCR-BERT embeds similar sequences in similar space; further 
sequences are more dissimilar as reflected by larger edit distances. Since sequence similarity is a 
known heuristic for predicting TCR binding, this suggests that TCR-BERT’s embedding is conducive 
to downstream TCR sequence analyses. 

(D) Plot comparing Levenshtein edit distance between TRBs relative to the (red) centroid TRB shown 
in (C) and their Euclidean distance in TCR-BERT’s embedding space. X-axis denotes the (discrete) 
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edit distance to the centroid, and y-axis denotes the distribution of (continuous) Euclidean 
distances for all TRBs with that edit distance. We observe a strong correlation between edit and 
embedding distance, which lends additional support to the observation made in (C). 
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Supplementary Figure 2: Layer selection for embedding 

To choose the optimal representation within TCR-BERT for downstream tasks, we choose a layer that 
maximizes validation set performance within the LCMV GP33 dataset. We sweep across the last 8 
transformer layers’ outputs, evaluating AUPRC (A) on the validation set (fixed size) for various levels of 
available training data from (x-axis). We find that the 8th layer (-5 in above plots) most consistently 
produces the best AUPRC (our primary evaluation metric) across the widest range of training data sizes. 
We sanity check that this layer provides reasonable AUROC values (B) as well. We use this representation 
for all results, analyses, and visualizations that do not involve fine-tuning TCR-BERT. Note that we perform 
this layer selection once and do not repeat or adjust it for other datasets or other applications (e.g., TCR 
clustering).   
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Supplementary Figure 3: Additional antigen cross-validation performance comparisons 

In each experiment, we take one of 26 antigens and its associated binding TRBs and spike in background 
human TRBs at a ratio of 5:1. We evaluate test AUPRC using a random 70/30 train/test split. In each panel, 
the grey line indicates performance of a random classifier, and the orange line indicates equal 
performance between the compared methods. Points above the orange line indicate instances where the 
y-axis model performs better, and vice versa. 

(A) Compares SETE, a supervised tree-based model (x-axis) to PCA-SVM on TCR-BERT’s embedding (y-
axis). In 25 of 26 antigens, TCR-BERT exhibits improved test set AUPRC (p=4.67e-06, Wilcoxon 
test). 

(B) Compares performance of PCA-SVM using TAPE’s embeddings (x-axis) versus TCR-BERT’s 
embeddings (y-axis). In every tested case, TCR-BERT provides superior performance (p=7.32e-05, 
Wilcoxon test). This test isolates the effect of using different protein language models to embed 
TCRs while keeping the classifier module constant. Along with Figure 2B, this indicates that TCR-
BERT outperforms general purpose protein language models for TCR embedding and modelling. 

(C) We additionally evaluate performance when omitting each of our two pre-training steps. Here, 
we leave out the classification pre-training step (i.e., using MAA only, y-axis), comparing it to the 
TCR-BERT model with both pretraining steps (x-axis). Omitting classification pre-training results in 
a drop in performance in all cases (p=4.15e-06, Wilcoxon test). 

(D) We similarly evaluate the full TCR-BERT pre-training (x-axis) against using only classification pre-
training (i.e., no MAA, y-axis). We observe a decrease in performance in 24 of 26 cases (p=1.61e-
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05, Wilcoxon test). Along with panel (C), these results indicate that both of our pre-training steps 
are necessary for enabling TCR-BERT’s strong performance.  
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Supplementary Figure 4: LCMV test set AUROC 

AUROC curves describing various classifiers’ test performance predicting GP33 binding given paired 
TRA/TRB sequences. TCR-BERT provides the best performance when evaluated on AUROC (shown here) 
as well on AUPRC, our primary evaluation metric (Figure 2D). Solid line indicates models leveraging pre-
training, whereas dashed lines indicate models that use only supervised training.  
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Supplementary Figure 5: Detailed comparison of GLIPH and TCR-BERT antigen specificity groupings 

Both GLIPH and TCR-BERT produce TRB groupings with configurable degrees of granularity. This is 
controlled using the resolution parameter to the Leiden clustering algorithm for TCR-BERT (larger values 
are more granular) and the global convergence distance cutoff for GLIPH (smaller values are more 
granular). We compare the performance of TCR-BERT and GLIPH across various clustering granularities 
using human NP177 antigen (A, B) and murine LCMV GP33 (C, D). 

(A) Shows percent clustered for a mixture of human NP177 antigen for TCR-BERT (blue) and GLIPH 
(orange). TCR-BERT converges to having all sequences clustered as the clustering becomes less 
stringent, while GLIPH produces variable, unpredictable results. 

(B) Shows the percent correctly clustered for these two methods, again for the NP177 antigen. Both 
methods trend towards lower percent correctly clustered as clustering granularity decreases. 
However, TCR-BERT’s clustering stabilizes above the expected correctness of a random classifier, 
whereas GLIPH’s behavior is much less consistent, frequently dipping below random.  

(C) Shows percent clustered for clustering methods on the murine LCMV GP33 dataset. With TCR-
BERT, looser clustering configurations allow for clustering of the entire dataset (blue) as it does 
for the NP177 dataset (panel A). GLIPH on the other hand, produces no consistent relationship 
between its configuration and percentage clustered (orange). Indeed, GLIPH struggles to cluster 
any meaningful proportion of the given TRBs. This reveals that GLIPH not only exhibits erratic 
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behavior across granularity configurations, but also behaves inconsistently when evaluated on 
different datasets. 

(D) Shows percent correctly clustered for these methods on the LCMV GP33 dataset. As before, TCR-
BERT produces more predictable performance (blue). However, there are a few cases where TCR-
BERT does poorer than random. These only occur when TCR-BERT clusters only a handful of 
sequences, when a single misclassified sequence has an outsized impact on correctness; as TCR-
BERT clusters more sequences (lower resolution values, top horizontal axis), it consistently stays 
above random accuracy. While it might appear that GLIPH (orange) achieves perfect accuracy 
towards higher cutoffs, this is misleading as those cutoffs also lead to extremely few sequences 
being clustered (panel C), which vastly reduces the usefulness of the small handful of correctly 
clustered sequences. Increasing GLIPH’s global convergence distance cutoff seems to increase the 
percent correctly clustered in this case, which is contrary to the behavior observed for the NP177 
human dataset (panel B). TCR-BERT’s behavior, on the other hand, is consistent across parameters 
for both these datasets. Overall, these results show that TCR-BERT exhibits consistent, 
predictable, and improved clustering behavior compared to GLIPH. 
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Supplementary Figure 6: Runtime comparison for methods generating groupings for antigen specificity 

Comparison of elapsed time, in seconds, required to cluster TRB sequences with predicted shared antigen 
specificity. All methods are benchmarked on the same LCMV GP33 murine TRB sequences, subsetted to 
various input sizes (x-axis), and are run on the same machine. TCR-BERT can be run with GPU acceleration 
or using only the CPU; both cases exhibit similar runtime performance. GLIPH does not support GPU 
acceleration. 

(A) Shows runtime performance as we scale from 500 to 10,000 input sequences. GLIPH’s runtime 
scales super-linearly. For example, increasing the number of input sequences by 4x from 2500 to 
10000 results in a ~21x increase in runtime from about 10 minutes to over 3 hours. This makes 
running GLIPH prohibitively time-consuming on larger datasets, especially when evaluating 
multiple parameters/configurations. 

(B) Truncates the y-axis to lower values to clearly show TCR-BERT’s runtime characteristics. Even 
without GPU acceleration, TCR-BERT can process 10,000 inputs in less time than it takes GLIPH to 
process just 500. More importantly, irrespective of CPU or GPU hardware, TCR-BERT exhibits 
linear runtime scaling, making it much more scalable for analyzing large datasets.  
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Supplementary Figure 7: Additional views of 5m00 with high-attention TRA/TRB residues highlighted. 

3D structures showing the MHC (green), modified GP33 antigen (salmon), and TRA (pink) and TRB (yellow). 
GP33 antigen side chains are shown, as well as side chains for TRA and TRB residues with TCR-BERT 
attentions in the top 33rd percentile of attention values in each chain. Other residues are shown in faded 
cartoon-ribbon illustrations without side chains. Attention values are derived from average attentions 
across test set sequences with identical lengths as sequences profiled in PDB structure 5m00. In all views, 
the TRA/TRB residues with the greatest attention are frequently in direct contact with the antigen 
peptide’s side chains. 

(A) Flipped view of Figure 4D 
(B) View with the TRA in the foreground 
(C) View with the TRB in the foreground  
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Supplementary Figure 8: TCR engineering supplement 

(A) Our algorithm for engineering TCR sequences successfully increases the predicted binding of 
sequences (y-axis) with each iteration (x-axis). The 0-th iteration represents the input sequences. 
We stop our engineering iterations (Figure 5A) when all sequences exceed 95% predicted binding 
probability, which occurs after 7 iterations in this instance. 

(B) Our algorithm for engineering TCR sequences for antigen binding works without simply 
regurgitating training sequences. We show this by computing the Levenshtein edit distance (larger 
values indicate greater dissimilarity, y-axis) between each generated TRA/TRB sequence pair and 
the most similar sequence pair in our dataset of GP33-binding TCRs. This is expressed as a violin 
plot for each iteration of our procedure (x-axis). At no point during the TCR engineering process 
do we include any sequence directly seen in training (i.e., no instances of 0 edit distance). This 
indicates that we are generating truly novel sequences that TCR-BERT has not seen before. 

(C) We can also visualize the progression from starting to engineered sequences in TCR-BERT’s 
embedding space. Here, we embed each TRB sequence (using the same variant of TCR-BERT pre-
trained on MAA and antigen classification as we use for other embedding visualizations for 
consistency) and visualize the embeddings using UMAP. Colors correspond to starting, engineered 
and similar binders (i.e., TRBs identified in a separate experiment to also bind GP33 that bear 
significant similarity to our final engineered set). Known GP33 binders (light blue) lie towards the 
“outskirts” of our starting set (orange), and our engineered set pull outwards toward these (dark 
blue). This shows that our TCR engineering process explores the landscape of TCR sequences 
without being confined to the area spanned by input sequences.  
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Supplementary Figure 9: Detailed sequence comparisons for 11 novel matches 

Each of these 11 matches was not present in the initial pool of matches corresponding to the starting set 
of sequences for TCR engineering. For each match (A-K, bottom panels), we show the generated TRB with 
the highest bit score/lowest E-value to that match (A-K, top panels). Each pairing is annotated with the E-
value corresponding to that match.   
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Supplementary Figure 10: Additional TCR engineering results 

(A) We repeat TCR engineering with a different starting set of negative sequences, also drawn from 
the pool of LCMV test set negatives. As before, our TCR engineering procedure successfully 
creates sequences with increasingly greater predicted binding with each iteration. 

(B) We match the final set of engineered TRBs to known murine TRBs using BLAST (E-value ≤ 0.001). 
Among the significant hits, 61/189 correspond to GP33-binding TRB sequences. The bottom motif 
corresponds to these hits, and the top motif corresponds to our corresponding generated 
sequences. For context, proportionally fewer (69/393) matches for the starting input set 
corresponded to GP33-binding TRBs. As before, TCR-BERT proportionally enriches for GP33 
binders. 
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