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Abstract

The ability to computationally generate novel yet physically foldable protein
structures could lead to new biological discoveries and new treatments targeting
yet incurable diseases. Despite recent advances in protein structure prediction, di-
rectly generating diverse, novel protein structures from neural networks remains
difficult. In this work, we present a new diffusion-based generative model that de-
signs protein backbone structures via a procedure that mirrors the native folding
process. We describe protein backbone structure as a series of consecutive angles
capturing the relative orientation of the constituent amino acid residues, and gen-
erate new structures by denoising from a random, unfolded state towards a stable
folded structure. Not only does this mirror how proteins biologically twist into en-
ergetically favorable conformations, the inherent shift and rotational invariance of
this representation crucially alleviates the need for complex equivariant networks.
We train a denoising diffusion probabilistic model with a simple transformer back-
bone and demonstrate that our resulting model unconditionally generates highly
realistic protein structures with complexity and structural patterns akin to those of
naturally-occurring proteins. As a useful resource, we release the first open-source
codebase and trained models for protein structure diffusion.

1 Introduction

Proteins are critical for life, playing a role in almost every biological process, from relaying signals
across neurons (Zhou et al., 2017) to recognizing microscopic invaders and subsequently activating
the immune response (Mariuzza et al., 1987), from producing energy for cells (Bonora et al., 2012)
to transporting molecules along cellular highways (Dominguez & Holmes, 2011). Misbehaving pro-
teins, on the other hand, cause some of the most challenging ailments in human healthcare, includ-
ing Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and cystic fibrosis (Chaudhuri
& Paul, 2006). As a consequence of their importance, proteins have been extensively studied as a
therapeutic medium (Kamionka, 2011; Dimitrov, 2012) and constitute a rapidly growing segment
of approved therapies (H Tobin et al., 2014). Thus, the ability to computationally generate novel
yet physically foldable protein structures could open the door to discovering novel ways to harness
cellular pathways and eventually lead to new treatments targeting yet incurable diseases.
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Many works have tackled the problem of generating new protein structures, but have generally
run into challenges with creating diverse yet realistic folds. Traditional approaches typically apply
heuristics to assemble fragments of experimentally profiled proteins into structures (Schenkelberg
& Bystroff, 2016; Holm & Sander, 1991). This approach is limited by the boundaries of expert
knowledge and available data. More recently, deep generative models have been proposed. How-
ever, due to the incredibly complex structure of proteins, these commonly do not directly generate
protein structures, but rather constraints (such as pairwise distance between residues) that are heav-
ily post-processed to obtain structures (Anand et al., 2019; Lee & Kim, 2022). Not only does this
add complexity to the design pipeline, but noise in these predicted constraints can also be com-
pounded during post-processing, resulting in unrealistic structures – that is, if the constraints are
at all satisfiable to begin with. Other generative models rely on complex equivariant network ar-
chitectures or loss functions to learn to generate a 3D point cloud that describes a protein structure
(Anand & Achim, 2022; Trippe et al., 2022; Luo et al., 2022; Eguchi et al., 2022). Such equivariant
architectures can ensure that the probability density from which the protein structures are sampled is
invariant under translation and rotation. However, translation- and rotation-equivariant architectures
are often also symmetric under reflection, leading to violations of fundamental structural proper-
ties of proteins like chirality (Trippe et al., 2022). Intuitively, this point cloud formulation is also
quite detached from how proteins biologically fold – by twisting to adopt energetically favorable
configurations (Šali et al., 1994; Englander et al., 2007).

Inspired by the in vivo protein folding process, we introduce a generative model that acts on the inter-
residue angles in protein backbones instead of on Cartesian atom coordinates (Figure 1). This treats
each residue as an independent reference frame, thus shifting the equivariance requirements from
the neural network to the coordinate system itself. For generation, we use a denoising diffusion
probabilistic model (diffusion model, for brevity) (Ho et al., 2020; Sohl-Dickstein et al., 2015)
with a vanilla transformer parameterization without any equivariance constraints. Diffusion models
train a neural network to start from noise and iteratively “denoise” it to generate data samples.
Such models have been highly successful in a wide range of data modalities from images (Saharia
et al., 2022; Rombach et al., 2022) to audio (Rouard & Hadjeres, 2021; Kong et al., 2021), and
are easier to train with better modal coverage than methods like generative adversarial networks
(GANs) (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021). We present a suite of validations to
quantitatively demonstrate that unconditional sampling from our model directly generates realistic
protein backbones – from recapitulating the natural distribution of protein inter-residue angles, to
producing overall structures with appropriate arrangements of multiple structural building block
motifs. We show that our generated backbones are diverse and designable, and are thus biologically
plausible protein structures. Our work demonstrates the power of biologically-inspired problem
formulations and represents an important step towards accelerating the development of new proteins
and protein-based therapies.

2 Related work

2.1 Generating new protein structures

Many generative deep learning architectures have been applied to the task of generating novel pro-
tein structures. Anand et al. (2019) train a GAN to sample pairwise distance matrices that describe
protein backbone arrangements. However, these pairwise distance matrices must be corrected, re-
fined, and converted into realizable backbones via two independent post-processing steps, the Al-
ternating Direction Method of Multipliers (ADMM) and Rosetta. Crucially, inconsistencies in these
predicted constraints can render them unsatisfiable or lead to significant errors when reconstructing
the final protein structure. Sabban & Markovsky (2020) use a long short-term memory (LSTM)
GAN to generate the (φ, ψ) dihedral angles. However, their network relies on downstream post-
processing to filter, refine, and fold predicted 3D structures, partly due to the fact that these two
dihedrals do not sufficiently specify backbone structure. Eguchi et al. (2022) propose a variational
auto-encoder with equivariant losses to generate 3D coordinates for protein backbones. However,
their work only targets immunoglobulin proteins and also requires refinement through Rosetta. Non-
deep learning methods have also been explored. Schenkelberg & Bystroff (2016) apply heuristics to
ensembles of similar sequences to make relatively small perturbations to known protein structures,
while Holm & Sander (1991) use a database search to find and assemble existing protein fragments
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that might fit a new scaffold structure. These approaches’ reliance on known proteins and hand-
engineered heuristics limit them to relatively small deviations from naturally-occurring proteins.

2.1.1 Diffusion models for protein structure generation

Several recent works have proposed extending diffusion models towards generating protein struc-
tures. These predominantly perform diffusion on the 3D Cartesian coordinates of the residues them-
selves. For example, Trippe et al. (2022) use an E(3)-equivariant graph neural network to model the
coordinates of protein residues. Anand & Achim (2022) adopt a hybrid approach where they train
an equivariant transformer with invariant point attention (Jumper et al., 2021); this model generates
the 3D coordinates of Cα atoms, the amino acid sequence, and the angles defining the orientation
of side chains. Another recent work by Luo et al. (2022) performs diffusion for generating anti-
body fragments’ structure and sequence by modeling 3D coordinates using an equivariant neural
network. Note that these prior works all use some form of equivariance to translation, rotation,
and/or reflection due to their formulation of diffusion on Cartesian coordinates. Another method,
ProteinSGM, (Lee & Kim, 2022) implements a score-based diffusion model that generates image-
like square matrices describing pairwise angles and distances between all residues in an amino acid
chain. However, this set of values is highly over-constrained, and must be used as a set of input con-
straints for Rosetta’s folding algorithm (Yang et al., 2020), which in turn produces the final folded
output. This is a similar approach to Anand et al. (2019), and is likewise subject to the aforemen-
tioned concerns regarding complexity, satisfiability, and cleanliness of predicted constraints. Our
work instead uses a minimal set of angles required to specify a protein backbone, and thus directly
generates structures without relying on additional methods for refinement. Unfortunately, none of
these prior works have publicly-available code, model weights, or generated examples at the time of
this writing. Thus, our ability to perform direct qualitative and quantitative comparisons is limited.

2.2 Diffusion models for small molecules

A related line of work focuses on creating and modeling small molecules, typically in the context of
drug design, using similar generative approaches. These small molecules average 44 atoms in size
(Jing et al., 2022). Compared to proteins, which average several hundred residues and thousands of
atoms (Tiessen et al., 2012), the relatively small size of small molecules makes them easier to model.
The E(3) Equivariant Diffusion Model (Hoogeboom et al., 2022) uses an equivariant transformer to
design small molecules by diffusing on their coordinates in Euclidean space. Other works have
explored torsional diffusion, i.e., modelling the angles that specify a small molecule, to sample
from the space of energetically favorable molecular conformations (Jing et al., 2022). This work
still requires an SE(3)-equivariant model as the input to their model is still a 3D point cloud. In
contrast, our problem formulation allows us to work entirely in terms of relative angles.

3 Method

3.1 Simplified framing of protein backbones using internal angles

Proteins are variable-length chains of amino acid residues. There are a total of 20 canonical amino
acids, all of which share the same three-atom N − Cα − C backbone, but have varying side chains
attached to the Cα atom (typically denoted R, see illustration in Figure 1). These residues assemble
to form polymer chains typically hundreds of residues long (Tiessen et al., 2012). These chains of
amino acids fold into 3D structures, taking on a shape that largely determines the protein’s functions.
These folded structures can be described on four levels: primary structure, which simply captures
the linear sequence of amino acids; secondary structure, which describes the local arrangement of
amino acids and includes structural motifs like α-helices and β-sheets; tertiary structure, which
describes the full spatial arrangement of all residues; and quaternary structure, which describes how
multiple different amino acid chains come together to form larger complexes (Sun et al., 2004).

We propose a simplified framing of protein backbones that follows the biological intuition of protein
folding while removing the need for complex equivariant networks. Rather than viewing a protein
backbone of length N amino acids as a cloud of 3D coordinates (i.e., x ∈ RN×3 if modeling only
Cα atoms, or x ∈ R3N×3 for a full backbone) as prior works have done, we view it as a sequence
of six internal, consecutive angles x ∈ [−π, π)(N−1)×6. That is, each vector of six angles describes
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Figure 1: We perform diffusion on six angles as illustrated in the schematic in the bottom center (also
defined in Table 1). Three of these are dihedral torsion angles (orange), and three are bond angles
(green). We start with an experimentally observed backbone described by angles x0 and iteratively
add Gaussian noise via the forward noising process q until the angles are indistinguishable from a
wrapped Gaussian at xT . We use these examples to learn the “reverse” denoising process pξ.

Table 1: Internal angles used to specify protein backbone structure. Some of these involve multiple
residues, indicated via i index subscripts. These are illustrated in Figure 1.

Angle Description
ψ Dihedral torsion about Ni − Cαi − Ci −Ni+1

ω Dihedral torsion about Cαi − Ci −Ni+1 − Cαi+1

φ Dihedral torsion about Ci −Ni+1 − Cαi+1 − Ci+1

θ1 Bond angle about Ni − Cαi − Ci
θ2 Bond angle about Cαi − Ci −Ni+1

θ3 Bond angle about Ci −Ni+1 − Cαi+1

the relative position of all backbone atoms in the next residue given the position of the current
residue. These six angles are defined precisely in Table 1 and illustrated in Figure 1. These internal
angles can be easily computed using trigonometry, and subsequently converted back to 3D Cartesian
coordinates by iteratively adding atoms to the protein backbone as described in Parsons et al. (2005),
keeping bond distances fixed to average lengths (see Appendix A.1, Figure S1).

This internal angle formulation has several key advantages. Most importantly, since each residue
forms its own independent reference frame, there is no need to use an equivariant neural network.
No matter how the protein is rotated or shifted, the angle of the next residue given the current residue
never changes. This allows us to use a simple transformer as the backbone architecture; in fact, we
demonstrate that our model fails when substituting our shift- and rotation-invariant internal angle
representation with Cartesian coordinates, keeping all other design choices identical (see Appendix
A.2, Figure S2). This internal angle formulation also closely mimics how proteins actually fold by
twisting into more energetically stable conformations.

3.2 Denoising diffusion probabilistic models

Denoising diffusion probabilistic models (or diffusion models, for short) leverage a Markov process
q(xt | xt−1) to corrupt a data sample x0 over T discrete timesteps until it is indistinguishable from
noise at xT . A diffusion model pξ(xt−1 | xt) parameterized by ξ is trained to reverse this forward
noising process, “denoising” pure noise towards samples that appear drawn from the native data
distribution (Sohl-Dickstein et al., 2015). Diffusion models were first shown to achieve good gener-
ative performance by Ho et al. (2020); we adapt this framework for generating protein backbones,
introducing necessary modifications to work with periodic angular values.

We modify the standard Markov forward noising process that adds noise at each discrete timestep t
to sample from a wrapped normal instead of a standard normal (Jing et al., 2022):
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q(xt | xt−1) = Nwrapped(xt;
√

1− βtxt−1, βtI) ∝
∞∑

k=−∞

exp

(
−‖xt −

√
1− βtxt−1 + 2πk‖2

2β2
t

)

where βt ∈ (0, 1)Tt=1 are set by a variance schedule. We use the cosine variance schedule (Nichol &
Dhariwal, 2021) with T = 1000 timesteps:

βt = clip
(

1− ᾱt
ᾱt−1

, 0.999

)
ᾱt =

f(t)

f(0)
f(t) = cos

(
t/T + s

1 + s
· π

2

)
where s = 8× 10−3 is a small constant for numerical stability. We train our model for pξ(xt−1|xt)
with the simplified loss proposed by Ho et al. (2020), using a neural network nnξ(xt, t) that predicts
the noise ε ∼ N (0, I) present at a given timestep (rather than the denoised mean values themselves).
To handle the periodic nature of angular values, we introduce a function to “wrap” values within the
range [−π, π): w(x) = ((x + π) mod 2π) − π. We use w to wrap a smooth L1 loss (Girshick,
2015) Lw, which behaves like L1 loss when error is high, and like an L2 loss when error is low; we
set the transition between these two regimes at βL = 0.1π. While this loss is not as well-motivated
as torsional losses used by Jing et al. (2022), we find that it achieves strong empirical results.

dw = w
(
ε− nnξ

(
w
(√
ᾱtx0 +

√
1− ᾱtε

)
, t
))

Lw =

{
0.5

d2w
βL

if |dw| < βL

|dw| − 0.5βL otherwise

During training, timesteps are sampled uniformly t ∼ U(0, T ). We normalize all angles in the
training set to be zero mean by subtracting their element-wise angular mean µ; validation and test
sets are shifted by this same offset.

Figure 1 illustrates this overall training process, including our previously described internal angle
framing. The internal angles describing the folded chain x0 are corrupted until they become indis-
tinguishable from random angles, which results in a disordered mass of residues at xT ; we sample
points along this diffusion process to train our model nnξ. Once trained, the reverse process of sam-
pling from pξ also requires modifications to account for the periodic nature of angles, as described

in Algorithm 1. The variance of this reverse process is given by σt =
√

1−ᾱt−1

1−ᾱt
· βt.

Algorithm 1 Sampling from pξ with FoldingDiff

1: xT ∼ w (N (0, I)) . Sample from a wrapped Gaussian
2: for t = T, . . . , 1 do
3: z = N (0, I) if t > 1 else z = 0

4: xt−1 = w
(

1√
αt

(
xt − 1−αt√

1−ᾱt
nnξ(xt, t)

)
+ σtz

)
. Wrap sampled values about [−π, π)

5: end for
6: return w(x0 + µ) . Un-shift generated values by original mean shift

This sampling process can be intuitively described as refining internal angles from an unfolded state
towards a folded state. As this is akin to how proteins fold in vivo, we name our method FoldingDiff.

3.3 Modeling and dataset

For our reverse (denoising) model pξ(xt, t), we adopt a vanilla bidirectional transformer architecture
(Vaswani et al., 2017) with relative positional embeddings as described in Shaw et al. (2018). Our
six-dimensional input is linearly upscaled to the model’s embedding dimension (d = 384). To
incorporate the timestep t into this model, we generate random Fourier feature embeddings (Tancik
et al., 2020) as done in Song et al. (2020) and add these embeddings to each upscaled input. To
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convert the transformer’s final per-position representations to our six outputs, we apply a regression
head consisting of a densely connected layer, followed by GELU activation (Hendrycks & Gimpel,
2016), layer normalization, and finally a fully connected layer outputting our six values. We train
this network with the AdamW optimizer (Loshchilov & Hutter, 2019) over 10,000 epochs, with a
learning rate that linearly scales from 0 to 5× 10−5 over 1,000 epochs, and back to 0 over the final
9,000 epochs. Validation loss appears to plateau after ≈ 1,400 epochs; additional training does not
improve validation loss, but appears to lead to a poorer diversity of generated structures. We thus
take a model checkpoint at 1,484 epochs for all subsequent analyses.

We train our model on the CATH dataset, which provides a “de-duplicated” set of proteins span-
ning a wide range of functions where no two chains share more than 40% sequence identity over
60% overlap (Sillitoe et al., 2015). We exclude any chains with fewer than 40 residues. Chains
longer than 128 residues are randomly cropped to a 128-residue window at each epoch. Using a
random 80/10/10 training/validation/test split, we have 24,316 training backbones, 3,039 validation
backbones, and 3,040 test backbones. Expanding this training set is a target for future work.

4 Experiments

4.1 Generating protein internal angles

After training our model, we check that it is able to recapitulate the correct marginal distributions
of dihedral and bond angles in proteins. We unconditionally generate 10 backbone chains each for
every length from 50 to 128, which results in a total of 780 generated backbone chains. We plot the
distributions of all six angles, aggregated across these 780 structures, and compare each distribution
to that of test set structures less than 128 residues in length (Figures 2, S4). We observe that, across
all angles, the generated distribution almost exactly recapitulates the test distribution. This is true
both for angles that are nearly Gaussian with low variance (ω, θ1, θ2, θ3) as well as for angles with
highly complex, high-variance distributions (φ, ψ). Compared to similar plots generated from other
protein diffusion methods (e.g., Figure 1 in Anand & Achim (2022), reproduced with permission in
Figure S5), we qualitatively observe that our method produces a much tighter distribution that more
closely matches the natural distribution of bond angles.

3 2 1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
fre

qu
en

cy

 distribution, KL=0.0412
Test
Sampled

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 distribution, KL=0.0480

3 2 1 0 1 2 3
0

1

2

3

4

5
 distribution, KL=0.0318

0.0 0.5 1.0 1.5 2.0 2.5
Angle (rad)

0

2

4

6

8

10

No
rm

al
ize

d 
fre

qu
en

cy

1 distribution, KL=0.0259

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Angle (rad)

0

2

4

6

8

10

12

14

2 distribution, KL=0.0630

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Angle (rad)

0

2

4

6

8

10

12

14

3 distribution, KL=0.0312

Figure 2: Comparison of the distributions of angular values in held-out test set and in generated
samples. Top row shows dihedral angles (torsional angles involving 4 atoms), and bottom row
shows bond angles (involving 3 atoms). KL divergence is calculated between DKL(sampled||test).
Figure S4 shows the cumulative distribution function (CDF) corresponding to these histograms.

However, looking at individual distributions of angles alone does not capture the fact that these
angles are not independently distributed, but rather exhibit significant correlations. A Ramachandran
plot, which plots the frequency of co-occurrence between the dihedrals (φ, ψ), is commonly used to
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illustrate these correlations between angles (Ramachandran & Sasisekharan, 1968). Figure 3 shows
the Ramachandran plot for chains with fewer than 128 residues in the test set, as well as that for
our 780 generated structures. The Ramachandran plot for natural structures (Figure 3a) contains
three major concentrated regions corresponding to right-handed α helices, left-handed α helices,
and β sheets. All three of these regions are recapitulated in our generated structures (Figure 3b). In
other words, FoldingDiff is able to generate all three major secondary structure elements in protein
backbones. Furthermore, we see that our model correctly learns that right-handed α helices are much
more common than left-handed α helices (Cintas, 2002). Prior works that use equivariant networks,
such as Trippe et al. (2022), cannot differentiate between these two types of helices due to network
equivariance to reflection. This concretely demonstrates that our internal angle formulation leads to
improved handling of chirality (i.e., the asymmetric nature of proteins) in generated backbones.

(a) Ramachandran plot, test set
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(b) Ramachandran plot, generated backbones
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Figure 3: Ramachandran plots comparing the (φ, ψ) dihedral angles for test set (3a) and generated
protein backbones (3b). Each major region of this plot indicates a different secondary structure ele-
ment, as indicated in panel 3a. All three main structural elements are recapitulated in our generated
backbones, along with some less common angle combinations. Lines are artifacts of null values.

4.2 Analyzing generated structures

We have shown that our model generates realistic distributions of angles and that our generated joint
distributions capture secondary structure elements. We now demonstrate that the overall structures
specified by these angles are biologically reasonable. Recall that naturally occurring protein struc-
tures contain multiple secondary structure elements. We use P-SEA (Labesse et al., 1997) to count
the number of secondary structure elements in each test-set backbone of fewer than 128 residues,
and plot the frequency of α/β co-occurrence counts in Figure 4a. Figure 4b repeats this analysis
for our generated structures, which frequently contain multiple secondary structure elements just as
naturally-occurring proteins do. FoldingDiff thus appears to generate rich structural information.

Beyond demonstrating that FoldingDiff’s generated backbones contain reasonable structural mo-
tifs, it is also important to show that they are designable – meaning that we can find a sequence of
amino acids that can fold into the designed backbone structure. After all, a novel protein structure
is not useful if we cannot physically realize it. Previous works evaluate this in silico by predict-
ing possible amino acids that fold into a generated backbone and checking whether the predicted
structure for these sequences matches the original backbone. Following this general procedure,
for a generated structure s, we use the ESM-IF1 inverse folding model (Hsu et al., 2022) to gen-
erate 8 different amino acid sequences. We then use OmegaFold (Wu et al., 2022) to predict the
3D structures ŝ1, . . . , ŝ8 corresponding to each of these sequences. We use TMalign (Zhang &
Skolnick, 2005), which evaluates structural similarity between backbones, to score each of these
8 structures against the original structure s. The maximum score maxi∈[1,8] TMalign(s, ŝi) is the
self-consistency TM (scTM) score. A scTM score of ≥ 0.5 is considered to be in the same fold,
and thus is “designable.” We repeat this process for each of our 780 generated backbones. This
evaluation is similar to previous evaluations done by Trippe et al. (2022) and Lee & Kim (2022), ex-
cept that we use OmegaFold instead of AlphaFold (Jumper et al., 2021). OmegaFold is designed to
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0 1 2 3 4 5 6 7 8 9
Number of  helices

0

1

2

3

4

5

6

7

8

9

Nu
m

be
r o

f 
 sh

ee
ts

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fr
eq

ue
nc

y

(b) Secondary structure co-occurrence, generated
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Figure 4: 2D histograms describing co-occurrence of secondary structures in test backbones (4a) and
generated backbones (4b). Axes indicate the number of secondary structure present in a chain; color
indicates the frequency of a specific combination of secondary structure elements. Our generated
structures mirror real structures with multiple α helices, multiple β sheets, and a mixture of both.

be used without multiple sequence alignments (MSAs), and performs similarly to AlphaFold while
generalizing better to orphan proteins that may not have such evoluationary annotations (Wu et al.,
2022). Furthermore, given that prior works use AlphaFold without MSA information in their evalu-
ation pipelines (Trippe et al., 2022; Lee & Kim, 2022), OmegaFold appears to be a more appropriate
method for scTM evaluation.
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(a) Backbone designability by length

Poor designability, low training similarity

Medium designability
& similarity to training

Highly designable,
high training similarity

(b) Designability compared to training set similarity

Figure 5: Of our 780 generated backbones, ranging in length from 50-128 residues, we observe that
111 are designable (scTM ≥ 0.5). Shorter structures of less than 70 amino acids tend to have higher
scTM scores than longer structures (5a). We also see that generated backbones that are more similar
to training examples (greater maximum training TM score) tend to have better designability (5b).
The three structures indicated by arrows are illustrated in Figure S6.

Overall, we find that 111 of our 780 structures (14.2%) are designable with an scTM score ≥ 0.5
(Figure 5a), which is higher than the value of 11.8% reported by Trippe et al. (2022). Our improved
designability comes from a significantly higher proportion of short structures (≤ 70 residues) being
designable (57/210 for ours compared to 36/210 in Trippe et al. (2022), p = 0.014, Chi-square test).
There is no significant difference in designability for longer structures of 71-128 residues (54/570
for ours compared to 51/570 in Trippe et al. (2022), p = 0.76, Chi-square test). While ProteinSGM
(Lee & Kim, 2022) reports an even higher designability proportion of 50.5%, this metric is not
directly comparable, as ProteinSGM generates sets of constraints that are then used to fold the final
structure with Rosetta, rather than generating backbone structures directly as with our approach
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or that of Trippe et al. (2022). It is unsurprising that a structure produced by a dedicated protein
folding tool produces greater designability. The authors themselves note that this Rosetta “post-
processing” significantly improves the viability of their structures. To additionally contextualize our
scTM scores, we benchmark against a naive baseline structure sampling method that preserves the
overall distribution of protein bond angles but destroys their positional relationships; FoldingDiff
significantly outperforms this baseline (see Appendix A.3, Figure S3).

We additionally evaluate the similarity of each generated backbone to any training backbone by
taking the maximum TM score across the entire training set. The maximum training TM-score is
significantly correlated with scTM score (Spearman’s r = 0.79, p = 1.2 × 10−165, Figure 5b),
indicating that structures more similar to the training set tend to be more designable. However,
this does not suggest that we are merely memorizing the training set; doing so would result in a
distribution of training TM scores near 1.0, which is not what we observe. We note that ProteinSGM
(Lee & Kim, 2022) reports a distribution of training set TMscores much closer to 1.0; this suggests a
greater degree of memorization and may contribute to their high reported scTM designability ratio.

Selected examples of our generated backbones and corresponding OmegaFold predictions of various
lengths are visualized using PyMOL (Schrödinger, LLC, 2015) in Figure 6. Interestingly, we find
that of our 111 designable backbones, only 4 contain β sheets as annotated by P-SEA. Conversely, of
our 669 backbones with scTM < 0.5, 545 contain β sheets. This suggests that generated structures
with β sheets may be less designable (p < 1.0 × 10−5, Chi-square test). It is unclear whether
this is due to our model generating poor backbones in this condition, or because ESM-IF1 and
OmegaFold struggle with β sheets. We additionally cluster our designable backbones and observe a
large diversity of structures (Figure S8). This suggests that our model is not simply generating small
variants of a handful of core structures, which prior works appear to do (Figure S9).

59 residues, scTM = 0.46 68 residues, scTM = 0.54 107 residues, scTM = 0.46 126 residues, scTM = 0.46
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Figure 6: Selected generated protein backbones of varying length that are approximately designable
(scTM ≈ 0.5). Top row shows our directly generated backbones; bottom row shows OmegaFold
predicted structure for residues inferred by ESM-IF1 to produce our generated backbone. Structures
contain both α helices (coils, columns 1-4) and β sheets (ribbons, columns 1 and 3), and each
appears meaningfully different from its most similar training example (Figure S7).

5 Conclusion

In this work, we present a novel parameterization of protein backbone structures that allows for
simplified generative modeling. By considering each residue to be its own reference frame, we
describe a protein using the resulting relative internal angle representation. We show that a vanilla
transformer can then be used to build a diffusion model that generates high-quality, biologically
plausible, diverse protein structures. These generated backbones better respect protein chirality and
exhibit greater designability compared to prior works that use equivariance assumptions.

While we demonstrate promising results with our model, there are several limitations to our work.
Although formulating a protein as a series of angles enables us to use simpler models without equiv-
ariance mechanisms, this framing allows accumulated errors to significantly alter the overall gener-
ated structure. This takes two forms: small errors iteratively compounding into larger errors over
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many residues, and single large errors drastically modifying the structure. Additionally, some gen-
erated structures exhibit collisions where the generated structure crosses through itself. Future work
could explore methods to avoid these pitfalls using geometrically-informed architectures such as
those used in Wu et al. (2022). Our generated structures are still of relatively short lengths (up to
128 residues) compared to natural proteins which typically have several hundred residues. We also
do not handle multi-chain complexes or ligand interactions, and are only able to generate static struc-
tures that do not capture the dynamic nature of proteins. Additional future work could incorporate
amino acid sequence generation in parallel with structure generation, along with guided generation
using protein function or domain annotations. In summary, our work provides an important step in
using biologically-inspired problem formulations for generative protein design.

Code availability and reproducibility

All code for training our model and performing downstream analyses is available at https://
github.com/microsoft/foldingdiff. Trained model weights used for generating all results in
this manuscript are available there as well.
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A Appendix

A.1 Internal angle formulation of protein backbones

A protein backbone structure can be fully specified by a total of 9 values per residue: 3 bond dis-
tances, 3 bond angles, and 3 dihedral torsional angles. The three bond angles and dihedrals are
described in Table 1, and the three bond distances correspond to Ni → Cαi, Cαi → Ci, and
Ci → Ni+1 where i denotes residue index. These values enable a protein backbone to be losslessly
converted from Cartesian to internal angle representation, and vice versa. To determine which subset
of values to use to frame proteins in our model, we take a set of experimentally profiled proteins and
translate their coordinates from Cartesian to internal angles and distances and back, measuring the
TM score between the initial and reconstructed structures. When excluding an angle or distance, we
fix all corresponding values to the mean. The reconstruction TM scores of various combinations of
values is illustrated in Figure S1. Of these 9 values, the three bond distances are the least important
for reliably reconstructing a structure from Cartesian coordinates to the inter-residue representation
and back; they can usually be replaced with constant average values without much impact on the
recovered structure. In comparison, removing even two bond angles with relatively little variance
(θ2, θ3) results in a large loss in reconstruction TM score (third bar). Removing all bond angles and
retaining only dihedrals (φ, ψ, ω) results in only about half of proteins being able to be reconstructed
(last bar). Thus, we model the three dihedrals and the three bond angles (second bar in Figure S1);
this simplifies our prediction problem to use only periodic angular values (instead of a mixture of
angular and real values) without a substantial loss in the accuracy of described structures. Future
work might include additional modeling of these real-valued bond distances.
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Figure S1: Comparison of various combinations of angles and distances and their ability to re-
construct original protein backbones. Error bars represent standard deviation in TM scores when
reconstructing the protein backbone. Dihedrals include φ, ψ, ω, and bond angles include θ1, θ2, θ3

(Table 1). The first column, with all bond angles, dihedral angles, and bond distances, perfectly
reconstructs Cartesian coordinates from internal angles. The second column corresponds to the for-
mulation used in the main text, where we model the 3 dihedrals and 3 bond angles, but keep the 3
bond distances fixed to average values. Other columns replace even more values with their respective
means and result in reconstruction TM scores that are too low to be reliably useful.
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One challenge with converting between aN -residue set of Cartesian coordinates to a set ofN−1 an-
gles between consecutive residues is that the latter representation does not capture the first residue’s
information. To solve this, we use a fixed set of coordinates to “seed” generation of Cartesian co-
ordinates, using the N − 1 specified angles to build out from this fixed point. For all generations,
this fixed point is extracted from the coordinates of the N − Cα − C atoms in first residue on the
N-terminus of the PDB structure 1CRN (Teeter, 1984).

A.2 Substituting internal angle formulation for Cartesian coordinates

We perform an “ablation” of our internal angle representation by replacing our framing of proteins
as a series of inter-residue internal angles with a simple Cartesian representation of Cα coordinates
x ∈ RN×3. Notably, this Cartesian representation is no longer rotation or shift invariant. We train
a denoising diffusion model using this Cartesian representation, using the same variance schedule,
transformer backbone architecture, and loss function, but sampling from a standard Gaussian and
with all usages of our wrapping function w removed. This represents the same modelling approach
as our main diffusion model, with only our internal angle formulation removed.

To evaluate the quality of this Cartesian-based diffusion model’s generated structures, we calculate
the pairwise distances between all Cα atoms in its generated structures and compare these with dis-
tance matrices calculated for real proteins and for our internal angle diffusion model’s generations.
For a real protein, this produces a pattern that reveals close proximity between pairwise residues
where the protein is folded inwards to produce a compact, coherent structure (Figure S2a). How-
ever, similarly visualizing the Cα pairwise distances in the Cartesian model’s generated structures
yields no significant proximity or patterns between any residues (Figure S2b). This suggests that the
ablated Cartesian model cannot learn to generate meaningful structure. Our internal angle model,
on the other hand, produces a visualization that is very similar to that of real proteins (Figure S2c).
Simply put, our model’s performance drastically degrades when we change only how inputs are
represented. This demonstrates the importance and effectiveness of our internal angle formulation.
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(a) Cα pairwise distances, real structure
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(b) Cα pairwise distances, Cartesian model
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(c) Cα pairwise distances, FoldingDiff (ours)
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Figure S2: Pairwise distances between all Cα atoms in various protein backbone structures, all of
similar length. All panels use the same color scale. S2a illustrates a set of distances for a real protein
structure; note the visual patterns that correspond to various secondary structures and potential con-
tacts and interactions between residues. S2b shows these distances for a structure generated by an
ablated model that replaces our proposed internal angle representation with Cartesian coordinates,
which results in no coherent structural generation. For comparison, our FoldingDiff model produces
structures that compactly fold to create many potential contacts, just as real proteins do (S2c). This
final distance matrix corresponds to the generated structure in the right-most column in Figure 6.
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A.3 Baseline method for contextualizing scTM scores

To contextualize the distribution of scTM scores (Figure 5a), we implement a naive angle generation
baseline. We take our test dataset, and concatenate all examples into a matrix of x̂ ∈ [−π, π)N̂×6,
where N̂ denotes the total number of angle sets in our test dataset, aggregating across all individual
chains. To generate a backbone structure of length l, we simply sample l indices from U(0, N̂).
This creates a chain that perfectly matches the natural distribution of protein internal angles, while
also perfectly reproducing the pairwise correlations, i.e., of dihedrals in a Ramachandran plot, but
critically loses the correct ordering of these angles. We generate 780 such structures (10 samples
for each integer value of l ∈ [50, 128)). This is the same distribution of lengths as the generated
set in our main analysis. For each of these, we perform the same scTM evaluation as before. The
distribution of scTM scores for these randomly-sampled structures compared to that of FoldingDiff’s
generated backbones is shown in Figure S3. We observe that this random protein generation method
produces significantly poorer scTM scores than our model does (p = 4.4 × 10−60, Mann-Whitney
test). This suggests that our model is not simply learning the overall distribution of angles, but is
learning the correct ordering of angles that comprise a folded protein structure.
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Figure S3: Distribution of scTM scores for our sampled proteins, compared to scTM scores for
structures created by randomly shuffling naturally-occurring internal angles. The randomly sampled
angles result in no designable structures, despite perfectly capturing the overall distribution and
pairwise relations between angles. This suggests our method correctly learns the spatial ordering of
angles that folds a valid structure.
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A.4 Additional Supplementary Figures
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Figure S4: Comparison of the cumulative distribution functions (CDF) of angular values in test set
and in generated samples. Top row shows dihedral angles (torsional angles involving 4 atoms), and
bottom row shows bond angles (involving 3 atoms). Figure 2 shows the histogram distributions
corresponding to these CDFs.

Figure S5: Figure 1B from Anand & Achim (2022), reproduced with permission for ease of refer-
ence. Illustrated Cαi − Ci − Ni+1 bond angle (third plot from the left) corresponds to θ2 in our
formulation. Sampled angles in the work of Anand & Achim (2022) exhibit a much larger spread
than the natural distribution of angles, whereas our work matches much more tightly (Figures 2, S4).
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Figure S6: Generated structures representing the full range of designability (scTM) and training
similarity scores. The top row indicates the original generated structure, the middle row shows the
training structure with the highest TM score, and the bottom row indicates the structure predicted by
OmegaFold based on residues predicted to produce our generated structure by ESM-IF1. The first
column shows a structure with high designability and high training similarity. The second column
shows a structure with designability and training similarity close to 0.5. The third column shows a
generated example that is very different from any training chain, but is also not designable.

Figure S7: Structures from Figure 6 illustrated with the training example with the highest TM score
(most similar). Figure rows are arranged as in Figure S6. Note that our generated structures are
visually quite different compared to the best training set match – in each example, our generated
structure contains a completely different arrangement of secondary structure elements than the clos-
est training structure, indicating that they may be more distinct than TM scores alone might suggest.
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Figure S8: Clustering of our n = 111 “designable” generated backbones with scTM scores ≥ 0.5.
We use the average distance metric to perform hierarchical clustering on the pairwise distance matrix
d(x, y) = 1 − TMscore(x, y). Dark values corresponding to 0 (or conversely, a TM score of 1)
indicate (nearly) identical structures. While there are some loosely related groups of structures, we
do not observe clearly delineated groups. This indicates that the designable backbones we generate
are diverse and represent a wide range of potential structures. For comparison to prior works, see
Figure S9.
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Figure S9: Figure from Trippe et al. (2022), reproduced with permission for ease of reference.
These authors similarly cluster unconditionally generated backbones with scTM ≥ 0.5 using 1 −
TMscore(x, y) as a distance metric. Compared to our identical evaluation, illustrated in Figure S8,
we notice that this clustering has a few dark blocks of nearly 0 distance, or a TM score of nearly 1.
This suggests that among these designable backbones, many are actually minor variants of a core
structure; in actuality, though this work claims to produce 90 designable structures, there seem to be
fewer unique structures in this set due to many being near-duplicates.
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